Achieving the control of light fields in a manner similar in sophistication to the control of electromagnetic fields in the microwave and radiofrequency regimes has been a major challenge in optical physics research. We manipulated the phase and amplitude of five discrete harmonics spanning the blue to mid-infrared frequencies to produce instantaneous optical fields in the shape of square, sawtooth, and subcycle sine and cosine pulses at a repetition rate of 125 terahertz. Furthermore, we developed an all-optical shaper-assisted linear cross-correlation technique to retrieve these fields and thereby verified their shapes and confirmed the critical role of carrier-envelope phase in Fourier synthesis of optical waveforms.
Single-crystal n-type GaN nanowires have been grown epitaxially on a Mg-doped p-type GaN substrate. Piezoelectric nanognerators based on GaN nanowires are investigated by conductive AFM, and the results showed an output power density of nearly 12.5 mW/m(2). Luminous LED modules based on n-GaN nanowires/p-GaN substrate have been fabricated. CCD images of the lighted LED and the corresponding electroluminescence spectra are recorded at a forward bias. Moreover, the GaN nanowire LED can be lighted up by the power provided by a ZnO nanowire based nanogenerator, demonstrating a self-powered LED using wurtzite-structured nanomaterials.
We report a study of the ultraviolet (UV) irradiation effects on the wet chemical etching of unintentionally doped n-type gallium nitride (GaN) layers grown on sapphire substrates. When illuminated with a 253.7 nm mercury line source, etching of GaN is found to take place in aqueous phosphorus acid (H3PO4) and potassium hydroxide (KOH) solutions of pH values ranging from −1 to 2 and 11 to 15, respectively. Formation of gallium oxide is observed on GaN when illuminated in dilute H3PO4 and KOH solutions. These results are attributed to a two-step reaction process upon which the UV irradiation is shown to enhance the oxidative dissolution of GaN.
Sunlight readability is a critical requirement for display devices, especially for mobile displays. Anti-reflection (AR) films can greatly improve sunlight readability by reducing the surface reflection. In this work, we demonstrate a broadband moth-eye-like AR surface on a flexible substrate, intended for flexible display applications. The motheye-like nanostructure was fabricated by an imprinting process onto a flexible substrate with a thin hard-coating film. The proposed nanostructure exhibits excellent AR with luminous reflectance <0.23% and haze below 1% with indistinguishable image quality deterioration. A rigorous numerical model is developed to simulate and optimize the optical behaviors. Excellent agreement between the experiment and simulation is obtained. Meanwhile, the nanostructure shows robust mechanical characteristics (pencil hardness >3 H), which is favorable for touch panels. A small bending radius (8 mm) was also demonstrated, which makes the proposed nanostructure applicable for flexible displays. Additionally, a fluoroalkyl coating was applied onto the moth-eye-like surface to improve the hydrophobicity (with a water contact angle >100°). Such a self-cleaning feature helps protect touch panels from dust and fingerprints. The proposed moth-eye-like AR film is expected to find widespread applications for sunlight readable flexible and curved displays.
A practical process to fabricate InGaN/GaN multiple quantum well light emitting diodes (LEDs) with a self-organized nanorod structure is demonstrated. The nanorod array is realized by using nature lithography of surface patterned silica spheres followed by dry etching. A layer of spin-on-glass (SOG), which intervening the rod spacing, serves the purpose of electric isolation to each of the parallel nanorod LED units. The electroluminescence peak wavelengths of the nanorod LEDs nearly remain as constant for an injection current level between 25mA and 100mA, which indicates that the quantum confined stark effect is suppressed in the nanorod devices. Furthermore, from the Raman light scattering analysis we identify a strain relaxation mechanism for lattice mismatch layers in the nanostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.