Because dendritic cells (DC) are the most potent antigen-presenting cells involved in many pathophysiological responses, we investigated the effect of chemokines on the migration of these cells in an effort to determine whether chemokines may contribute to the initiation of immune responses. CD34+ progenitor cells isolated from umbilical cord blood were grown in suspension cultures with cytokines and expanded 50- to 100-fold. A variable proportion of the cells expressed markers consistent with DC. The proportion of CD1a+ DC was increased when the cells were cultured with interleukin-4 (IL-4). These cells expressed specific binding sites for C-C and C-X-C chemokines. Cells cultured with or without IL-4 had similar binding profiles. All C-C chemokines tested, including monocyte chemotactic protein (MCP)-1, MCP-2, MCP-3, macrophage inflammatory protein-1 alpha (MIP1 alpha), MIP-1 beta, and RANTES, induced migration of DC-enriched cells cultured with or without IL-4 with MCP-3 being the most potent chemoattractant. Phenotypic analysis of cell migrating in response to C-C chemokines showed that CD1a+ cells were indeed attracted across the polycarbonate filters, and there was no preferential attraction of contaminating CD14+ monocytes by C-C chemokines. DC-enriched cells also expressed specific binding sites for IL-8 and NAP2, which failed to induce cell migration. Our results suggest that C-C chemokines may participate in the recruitment of DC to amplify host defense.
Macrophage infiltration into inflammatory sites is generally preceded by neutrophils. This suggests neutrophils may be the source of chemotactic factors for monocytes. To identify these putative monocyte attractants, we have systematically prepared neutrophil granules, lysed them, and sequentially purified the released proteins by several reverse phase chromatography procedures. Assays for monocyte chemotactic activity of the chromatography fractions yielded a major peak of activity associated with a protein of 30 kD, according to SDS-PAGE analysis. NH2-terminal sequence of the protein revealed this to be identical to cathepsin G. The monocyte chemotactic activity of human cathepsin G was dose dependent with optimal concentration at 0.5–1 μg/ml. Cathepsin G is chemotactic rather than chemokinetic for monocytes, as demonstrated by checkerboard analysis. Cathepsin G–induced monocyte chemotaxis is partially pertussis toxin sensitive implying the involvement of a G protein–coupled receptor. Enzymatic activity of cathepsin G is associated with its monocyte chemotactic activity, since DFP- or PMSF-inactivated cathepsin G no longer induced monocyte migration. The chemotactic activity of cathepsin G can also be completely blocked by α1 antichymotrypsin, a specific inhibitor of chymotrypsin-like proteinases present in human plasma. In addition, cathepsin G is also a potent chemoattractant for neutrophils and a chemokinetic stimulant for T cells. In the course of pursuing these in vitro studies, we established that the T cell chemoattractant, azurocidin/CAP37 from human neutrophil granules, at doses of 0.05 to 5 μg/ml, was chemotactic for monocytes and neutrophils. As predicted from the in vitro chemotactic activity, subcutaneous injection of cathepsin G into BALB/c mice led to infiltration of both mononuclear cells and neutrophils. Thus, the transition of inflammatory exudate from neutrophil to mononuclear cells can be mediated, at least in part, by extracellular release of neutrophil granule proteins such as cathepsin G and azurocidin/CAP37.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.