In order to study the deformation evolution law of fault activation caused by deep mining in Shizishan Copper Mine, China, a monitoring system for fault activation slip is designed and implemented on the basis of the field investigation of footwall fault activation of the main orebody in the mining area. The displacement and stress of the fault are monitored by the multipoint displacement meter, bolt stress meter, and borehole stress meter. According to the measured results, the activation deformation laws of fault F2, fault F3, and fault F4 during deep continuous mining are analyzed in detail. The results show that, when the influence range of underground mining spreads to the fault, the increase in the additional tensile stress on the fault plane will reduce the shear strength of the fault and increase the slip of the fault. When the shear stress exceeds the shear strength of the fault plane, the shear failure of the fault plane occurs, the rock mass on both sides of the fault loses stability, and the fault becomes active; when the orebody in the deep sublevel 14 and sublevel 15 were continuously stoped, the development of the mining influence area to fault F2 leads to fault F2’s activation. When stoping the orebody in sublevel 16, fault F3 also activates. With the continuous downward mining of the deep part, the slip amount increases continuously. The fault activation sequence is from fault F2 to fault F3, and then to fault F4.
In order to study the law and mechanism of fault activation induced by deep continuous mining, this paper takes the fault activation caused by underground mining of Shizishan Copper Mine as the research object. On the basis of field investigation and theoretical analysis of fault activation, the law and mechanism of fault group activation induced by deep continuous mining in the Shizishan mining area are analyzed in detail based on the three-dimensional discrete element method software 3DEC. The results show that the fault effect of rock movement in the footwall of the main orebody in the mine area is obvious. The en echelon steep dipping fault group in the footwall of the goaf will move each fault block in the direction of the goaf and slip along the fault plane when the balance between mining and gravity is disrupted. The fault activation has a domino effect in time and space, and the mechanism of this effect is revealed. The research results have great significance for the deep mining area development, mining alignment arrangement, and disaster prevention and control caused by fault activation.
For the study of the driving forces behind fault activation and its influencing factors on the barrier effect of rock mass movement under the influence of mining, the discrete element numerical simulation software 3DEC was used for the analysis of the impact on the distance to mining area from fault, the buried depth of the upper boundary of the fault, the dip angle of fault, the size of the mining area and the thickness of the fault zone respectively. The results show that the mining areas are closer to the fault as distances decrease, the burial depth of the upper boundary of the fault increases, and the size of the mining area increases, the fault is easier to activate, and fault activation has a stronger barrier impact on displacement field and stress field propagation. When the fault is cut into the goaf, the difference of rock displacement in both directions of the fault increases when the dip of the fault increases, and the fault is more susceptible to instability and activation. The barrier strength grows with the increase of the thickness of the fault fracture zone. The results of this study have important implications for the guard against and control of deep mining-related fault activation disasters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.