The contribution of interleukin (IL)-6 signaling in obesity-induced inflammation remains controversial. To specifically define the role of hepatic IL-6 signaling in insulin action and resistance, we have generated mice with hepatocyte-specific IL-6 receptor (IL-6R) alpha deficiency (IL-6Ralpha(L-KO) mice). These animals showed no alterations in body weight and fat content but exhibited a reduction in insulin sensitivity and glucose tolerance. Impaired glucose metabolism originated from attenuated insulin-stimulated glucose transport in skeletal muscle and fat. Surprisingly, hepatic IL-6Ralpha-disruption caused an exaggerated inflammatory response during euglycemic hyperinsulinemic clamp analysis, as revealed by increased expression of IL-6, TNF-alpha, and IL-10, as well as enhanced activation of inflammatory signaling such as phosphorylation of IkappaBalpha. Neutralization of TNF-alpha or ablation of Kupffer cells restored glucose tolerance in IL-6Ralpha(L-KO) mice. Thus, our results reveal an unexpected role for hepatic IL-6 signaling to limit hepatic inflammation and to protect from local and systemic insulin resistance.
The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca2+ influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16INK4a. Specifically, we identified gene expression changes in pathways which are essential for Ca2+-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis.
Parasympathetic stimulation of pancreatic islets augments glucose-stimulated insulin secretion by inducing inositol trisphosphate receptor (IP(3)R)-mediated calcium ion (Ca2+) release. Ankyrin-B binds to the IP(3)R and is enriched in pancreatic beta cells. We found that ankyrin-B-deficient islets displayed impaired potentiation of insulin secretion by the muscarinic agonist carbachol, blunted carbachol-mediated intracellular Ca2+ release, and reduced the abundance of IP3R. Ankyrin-B-haploinsufficient mice exhibited hyperglycemia after oral ingestion but not after intraperitoneal injection of glucose, consistent with impaired parasympathetic potentiation of glucose-stimulated insulin secretion. The R1788W mutation of ankyrin-B impaired its function in pancreatic islets and is associated with type 2 diabetes in Caucasians and Hispanics. Thus, defective glycemic regulation through loss of ankyrin-B-dependent stabilization of IP3R is a potential risk factor for type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.