Background: The organization of chromatin in the nucleus plays an essential role in gene regulation. When considering the mammalian genome it is important to take into account that about half of the DNA is comprised of transposable elements. Given their repetitive nature, reads associated with these elements are generally discarded or randomly distributed among elements of the same type in genome-wide analyses. Thus, it is challenging to identify the activities and properties of individual transposons. As a result, we only have a partial understanding of how transposons contribute to chromatin folding and how they impact gene regulation.
The heterochromatin protein HP1 plays a central role in the maintenance of genome stability, in particular by promoting homologous recombination (HR)-mediated DNA repair. However, little is still known about how HP1 is controlled during this process. Here, we describe a novel function of the POGO transposable element derived with ZNF domain protein (POGZ) in the regulation of HP1 during the DNA damage response in vitro. POGZ depletion delays the resolution of DNA double-strand breaks (DSBs) and correlates with an increased sensitivity to different DNA damaging agents, including the clinically-relevant Cisplatin and Talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair pathways by retaining the BRCA1/BARD1 complex at DSBs, in a HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonic lethal and Pogz haplo-insufficiency (Pogz+/Δ) results in a developmental delay, a deficit in intellectual abilities, a hyperactive behaviour as well as a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Importantly, Pogz+/Δ mice are radiosensitive and accumulate DSBs in diverse tissues, including the spleen and the brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo, with clinical implications for the WHSUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.