During the past 15 years, quasi one-dimensional (1D) Cadmium Selenide (CdSe) nanomaterials have been widely investigated for high-performance electronic and optoelectronic devices, due to the unique geometrical and physical properties. In this review, recent advancements on diverse synthesis methods of 1D CdSe nanomaterials and the application in photodetectors have been illustrated in detail. First, several bottom-up synthesis methods of 1D CdSe nanomaterials have been introduced, including the vapor-liquid-solid method, the solution-liquid-solid method, and electrochemical deposition, etc. Second, the discussion on photodetectors based on 1D CdSe nanomaterials has been divided into three parts, including photodiodes, photoconductors, and phototransistors. Besides, some new mechanisms (such as enhancement effect of localized surface plasmon, optical quenching effect of photoconductivity, and piezo-phototronic effect), which can be utilized to enhance the performance of photodetectors, have also been elaborated. Finally, some major challenges and opportunities towards the practical integration and application of 1D CdSe nanomaterials in photodetectors have been discussed, which need to be further investigated in the future.
Thin-film transistors (TFTs) have been widely used in the increasingly advanced display field. However, it remains a challenge for TFTs to overcome the poor subthreshold swing in the fast switching...
The human brain, with high energy-efficient and parallel processing ability, inspires to mitigate power issues perplexing von Neumann architecture. As one of the essential components constructing the human brain, the emulation of biological synapses exploiting electronic devices consuming power at a biological level lays the foundation for the implementation of energy-efficient neuromorphic computing. Besides, signal matching between biologically-related stimuli and the driving voltage of artificial synapses helps to realize intelligent neuromorphic interfaces and sustainable energy. Here, ultra-sensitive artificial synapse stimulated at 1 mV with energy consumption of 132 attojoule/synaptic event is demonstrated. Biological signal matching and low power application are realized simultaneously based on sodium acetate (NaAc) doped polyvinyl alcohol (PVA) electrolyte. The biphasic current, which comprises the electrical-and ion-mediation current component, contributes to enrich synaptic functions compared to monophasic synaptic behavior. Moreover, freestanding NaAc-doped PVA membrane functions as both dielectric layer and mechanical support and facilitates to achieve flexible, transferable artificial synapse, which maintains functional stability at an ultralow voltage and power even after bending tests. Thus, encompassing superior sensitivity, low energy, and multiple functionalities with flexible, selfsupported, biocompatible property, takes a step to construct energetically-efficient, complex neuromorphic systems for wearable, implantable medicines as well as smart bio-electronic interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.