Exercise pretraining exerts multifactorial benefits on AD that support its use as a promising new therapeutic option for prevention of neurodegeneration in the elderly and/or AD population.
Purpose This study aimed to examine the effects of treadmill training on anxious–depressive-like behaviors of transgenic Alzheimer rats in the early stage of Alzheimer’s disease (AD) and provided evidence of exercise in alleviating fear-avoidance behavior deficits. Methods Male 2-month-old TgF344-AD and wild-type rats were divided into wild-type (n = 9), AD (n = 8), and AD + treadmill exercise (Exe) groups (n = 12). After 8 months of exercise, the passive avoidance test, Barnes maze task, novel object recognition test, and object location test were used to measure learning and memory function. The open-field test, elevated plus maze, sucrose preference test, and forced swim test were conducted to determine the anxious–depressive-like behavior of AD rats. Immunofluorescence staining, Western blot analysis, enzyme-linked immunosorbent assay analysis, and related assay kits were used to measure inflammatory cytokines, oxidative stress, amyloid-β production, and tau hyperphosphorylation. Results Behavioral tests revealed that 12-month-old animals did not show any spatial learning and memory deficits but did display anxious–depressive-like behavior (open field, center time: P = 0.008; center entries: P = 0.009; line crossings: P = 0.001). However, long-term exercise significantly inhibited anxious–depressive-like behavior in AD rats (center time: P = 0.016; center entries: P = 0.004; line crossings: P = 0.033). In addition, these animals displayed increased amyloid-β deposition, tau hyperphosphorylation, microgliosis, inflammatory cytokines release, and oxidative damage, which were attenuated significantly by long-term exercise training. Conclusion Long-term exercise training alleviated anxious–depressive-like behavior and improved fear-avoidance behavior in transgenic AD rats, supporting exercise training as an effective approach to prevent anxiety, depression, and fear-avoidance behavior deficits in the early stages of AD pathogenesis.
Recent work has indicated that photobiomodulation (PBM) may beneficially alter the pathological status of several neurological disorders, although the mechanism currently remains unclear. The current study was designed to investigate the beneficial effect of PBM on behavioral deficits and neurogenesis in a photothrombotic (PT) model of ischemic stroke in rats. From day 1 to day 7 after the establishment of PT model, 2-minute daily PBM (CW, 808nm, 350mW/cm, total 294J at scalp level) was applied on the infarct injury area (1.8mm anterior to the bregma and 2.5mm lateral from the midline). Rats received intraperitoneal injections of 5-bromodeoxyuridine (BrdU) twice daily (50mg/kg) from day 2 to 8 post-stoke, and samples were collected at day 14. We demonstrated that PBM significantly attenuated behavioral deficits and infarct volume induced by PT stroke. Further investigation displayed that PBM remarkably enhanced neurogenesis and synaptogenesis, as evidenced by immunostaining of BrdU, Ki67, DCX, MAP2, spinophilin, and synaptophysin. Mechanistic studies suggested beneficial effects of PBM were accompanied by robust suppression of reactive gliosis and the production of pro-inflammatory cytokines. On the contrary, the release of anti-inflammatory cytokines, cytochrome c oxidase activity and ATP production in peri-infarct regions were elevated following PBM treatment. Intriguingly, PBM could effectively switch an M1 microglial phenotype to an anti-inflammatory M2 phenotype. Our novel findings indicated that PBM is capable of promoting neurogenesis after ischemic stroke. The underlying mechanisms may rely on: 1) promotion of proliferation and differentiation of internal neuroprogenitor cells in the peri-infarct zone; 2) improvement of the neuronal microenvironment by altering inflammatory status and promoting mitochondrial function. These findings provide strong support for the promising therapeutic effect of PBM on neuronal repair following ischemic stroke.
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
We report the first use of human telomerase reverse transcriptase (hTERT) expression in experimental xenotransplantation. Previously, we showed that bovine adrenocortical cells can be transplanted into severe combined immunodeficient (SCID) mice, and that these cells form functional tissue that replaces the animals' own adrenal glands. We cotransfected primary bovine adrenocortical cells with plasmids encoding hTERT, SV40 T antigen, neo, and green fluorescent protein. These clones do not undergo loss of telomeric DNA and appear to be immortalized. Two clones were transplanted beneath the kidney capsule of SCID mice. Animals that received cell transplants survived indefinitely despite adrenalectomy. The mouse glucocorticoid, corticosterone, was replaced by the bovine glucocorticoid, cortisol, in the plasma of these animals. The tissue formed from the transplanted cells resembled that formed by transplantation of cells that were not genetically modified and was similar to normal bovine adrenal cortex. The proliferation rate in tissues formed from these clones was low and there were no indications of malignant transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.