BackgroundUncoordinated 51-like kinase 1 (ULK1) plays a vital role in autophagy. ULK1 dysregulation has recently been found in several human cancers.MethodsmRNA expression levels of ULK1 and clinical information were analysed from The Cancer Genome Atlas data. ULK1 expression levels were verified in 36 paired fresh ccRCC tissue specimens by western blot analysis. Expression of ULK1 was knockdown by shRNA lentivirus. ULK1 activity was inhibited by SBI-0206965. The effect of inhibition of ULK1 was measured by detecting the apoptotic rate, autophagy, and the ratio of ROS and NADPH. The efficacy of SBI-0206965 in vivo was assessed by the murine xenograft model.FindingsULK1 mRNA expression was significantly upregulated in clear cell renal cell carcinoma (ccRCC) and overexpression of ULK1 correlated with poor outcomes. We found that ULK1 was highly expressed in 66.7% of ccRCC tumours (p < 0·05). Knockdown of ULK1 and selective inhibition of ULK1 by SBI-0206965 induced cell apoptosis in ccRCC cells. We demonstrated that SBI-0206965 triggered apoptosis by preventing autophagy and pentose phosphate pathway (PPP) flux. Furthermore, blocking the kinase activity of ULK1 with SBI-0206965 resulted in a level of anticancer effect in vivo.InterpretationTaken together, our results suggested that ULK1 was upregulated in ccRCC tumours and may be a potential therapeutic target. Therefore, SBI-0206965 should be further considered as an anti-ccRCC agent.FundThis work was supported in part by The (No. 81570748) and (No. 2018J01345, 2017XQ1194).
Background: Epithelial sodium channels are disputed in renal cell carcinoma, but its functions and effects on clinical outcomes are not well understood. Materials and Methods: IHC and PT-PCR were used to detect ENaCα, β, γ, AVPR2, AQP2, and MR expression in the primary tumor and peritumoral tissues. GEPIA online tool was used to analyze the relationship between epithelial sodium channels and clinical-pathological characteristics. Tumor IMmune Estimation Resource online tool was used to investigate the immune profile relevant to epithelial sodium channels expression. Results: Quantitative RT-PCR analysis revealed that ENaCα, β, γ, AQP2, and AVPR2 mRNA were decreased in the RCC, but there was no difference in MR mRNA expression between kidney and RCC ( p =0.238). The IHC analyses showed that the intensely positive staining of ENaCα, β, γ, AVPR2, and AQP in the renal tubular and the attenuated in the RCCs. MR displayed moderate staining in both RCC and normal tissue. With the promotion of staging, the expression of AQP2, AVPR2, and MR reduced gradually and predicted a better prognosis. Although ENaCα, β, and γ were unable to associate with staging, we still observed a high expression of ENaCβ and γ displayed a poorer prognosis of RCC. Conclusions: ENaCs shows an oncogene profile in RCC, drugs targeting epithelial sodium channel should be a possible therapeutic way to treat RCC. AVPR2 and MR exhibit an encouraging immunomodulatory function; patients with low expression of AVPR2 and MR may obtain more benefit from immunotherapy.
Objectives. The most common subtype of renal cell carcinoma, clear cell renal cell carcinoma (ccRCC), has a high heterogeneity and aggressive nature. The basement membrane (BM) is known to play a vital role in tumor metastasis. BM-related genes remain untested in ccRCC, however, in terms of their prognostic significance. Methods. BM-related genes were gleaned from the most recent cutting-edge research. The RNA-seq and clinical data of the ccRCC were obtained from TCGA and GEO databases, respectively. The multigene signature was constructed using the univariate Cox regression and the LASSO regression algorithm. Then, clinical features and prognostic signatures were combined to form a nomogram to predict individual survival probabilities. Using functional enrichment analysis and immune-correlation analysis, we investigated potential enrichment pathways and immunological characteristics associated with BM-related-gene signature. Results. In this study, we built a model of 20 BM-related genes and classified them as high-risk or low-risk, with each having its anticipated risk profile. Patients in the high-risk group showed significantly reduced OS compared with patients in the low-risk group in the TCGA cohort, as was confirmed by the testing dataset. Functional analysis showed that the BM-based model was linked to cell-substrate adhesion and tumor-related signaling pathways. Comparative analysis of immune cell infiltration degrees and immune checkpoints reveals a central role for BM-related genes in controlling the interplay between the immune interaction and the tumor microenvironment of ccRCC. Conclusions. We combined clinical characteristics known to predict the prognosis of ccRCC patients to create a gene signature associated with BM. Our findings may also be useful for forecasting how well immunotherapies would work against ccRCC. Targeting BM may be a therapeutic alternative for ccRCC, but the underlying mechanism still needs further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.