Pseudorandom states, introduced by Ji, Liu and Song (Crypto'18), are efficiently-computable quantum states that are computationally indistinguishable from Haar-random states. One-way functions imply the existence of pseudorandom states, but Kretschmer (TQC'20) recently constructed an oracle relative to which there are no one-way functions but pseudorandom states still exist. Motivated by this, we study the intriguing possibility of basing interesting cryptographic tasks on pseudorandom states.We construct, assuming the existence of pseudorandom state generators that map a 𝜆-bit seed to a 𝜔(log 𝜆)-qubit state, (a) statistically binding and computationally hiding commitments and (b) pseudo one-time encryption schemes. A consequence of (a) is that pseudorandom states are sufficient to construct maliciously secure multiparty computation protocols in the dishonest majority setting.Our constructions are derived via a new notion called pseudorandom function-like states (PRFS), a generalization of pseudorandom states that parallels the classical notion of pseudorandom functions. Beyond the above two applications, we believe our notion can effectively replace pseudorandom functions in many other cryptographic applications.
A fundamental result in classical cryptography is that pseudorandom generators are equivalent to one-way functions and in fact implied by nearly every classical cryptographic primitive requiring computational assumptions. In this work, we consider a variant of pseudorandom generators called quantum pseudorandom generators (QPRGs), which are quantum algorithms that (pseudo)deterministically map short random seeds to long pseudorandom strings. We provide evidence that QPRGs can be as useful as PRGs by providing cryptographic applications of QPRGs such as commitments and encryption schemes.Our main result is showing that QPRGs can be constructed assuming the existence of logarithmic-length quantum pseudorandom states. This raises the possibility of basing QPRGs on assumptions weaker than one-way functions. We also consider quantum pseudorandom functions (QPRFs) and show that QPRFs can be based on the existence of logarithmic-length pseudorandom function-like states.Our primary technical contribution is a method for pseudodeterministically extracting uniformly random strings from Haar-random states.
Common random string model is a popular model in classical cryptography. We study a quantum analogue of this model called the common Haar state (CHS) model. In this model, every party participating in the cryptographic system receives many copies of one or more i.i.d Haar random states.We study feasibility and limitations of cryptographic primitives in this model and its variants:• We present a construction of pseudorandom function-like states with security against computationally unbounded adversaries, as long as the adversaries only receive (a priori) bounded number of copies. By suitably instantiating the CHS model, we obtain a new approach to construct pseudorandom function-like states in the plain model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.