High-grade glioma is one of the most lethal human cancers characterized by extensive tumor heterogeneity. In order to identify cellular and molecular mechanisms that drive tumor heterogeneity of this lethal disease, we performed single-cell RNA sequencing analysis of one high-grade glioma. Accordingly, we analyzed the individual cellular components in the ecosystem of this tumor. We found that tumor-associated macrophages are predominant in the immune microenvironment. Furthermore, we identified five distinct subpopulations of tumor cells, including one cycling, two OPC/NPC-like and two MES-like cell subpopulations. Moreover, we revealed the evolutionary transition from the cycling to OPC/NPC-like and MES-like cells by trajectory analysis. Importantly, we found that SPP1/CD44 interaction plays a critical role in macrophage-mediated activation of MES-like cells by exploring the cell-cell communication among all cellular components in the tumor ecosystem. Finally, we showed that high expression levels of both SPP1 and CD44 correlate with an increased infiltration of macrophages and poor prognosis of glioma patients. Taken together, this study provided a single-cell atlas of one high-grade glioma and revealed a critical role of macrophage-mediated SPP1/CD44 signaling in glioma progression, indicating that the SPP1/CD44 axis is a potential target for glioma treatment.
Non-small cell lung cancer (NSCLC), accounting for 85% of all lung cancer, is one of the leading causes of cancer-related death worldwide. Previously, we demonstrated that MPZL1 gene amplification promotes liver cancer metastasis through activating Src/Cortactin pathway. However, the clinical relevance and biological roles of the MPZL1 gene in lung cancer are still unknown. Here, we found that MPZL1 expression upregulates in human NSCLC, which is partly due to the copy number amplification of this gene. Next, we observed that high MPZL1 expression correlates with unfavorable prognosis of NSCLC patients. We further demonstrated that ectopic MPZL1 overexpression promotes in vitro migratory but not proliferation and colony formation abilities of both H1299 and H460 cells. Consistently, we found that MPZL1 knockdown impairs the migratory abilities of A549 and H1775 cells. Moreover, we found that MPZL1 knockdown inhibits in vivo metastatic but not tumor growth abilities of the A549 cells. Additionally, a total of 297 differentially expressed genes (DEGs) were identified by RNA sequencing in A549 cells upon MPZL1 knockdown. By integrative analysis of DEGs regulated by MPZL1 in A549 cells and human NSCLC tissues, we revealed that COL11A1 is the potential effector gene that positively regulated by MPZL1 and correlates with poor prognosis of NSCLC patients. In conclusion, our work indicates that one of the mechanisms by which MPZL1 promotes NSCLC metastasis is through upregulating the COL11A1, and MPZL1 can be used as a biomarker to predict the prognosis of NSCLC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.