New stations (such as metro stations) will bring remarkable changes to the local transportation and economic development. Understanding patterns of factors which importantly impact on public transit ridership in the surrounding areas of new stations is essential to their construction planning, like estimating the possible ridership. Built environment variables with high importance magnitude, which were thought applicable to estimate public transit ridership in other areas of the same category, were described as transferable variables (TVs) in this study. A transferability analysis method of the built environment for the ridership estimation was constructed by adopting partial least square regression (PLSR) based on available data. Taking Wuhan, China as an example, this study analyzed the changes and differences of the built environment variables in different categories of pedestrian catchment areas (PCAs) of metro stations on the importance and transferability magnitude for the metro and taxi ridership, based on the metro and taxi data of one week in January, April, and June. Performances of the ridership estimation based on TVs and all the built environment variables were compared. This study inferred that (1) most of the land use variables (about 85%) showed important influence on the metro and taxi ridership, while only about 18% of the other variables showed key impact. The importance magnitude of the built environment variables was mainly related to PCA categories and public transportation modes, but less related to time. (2) Highly important built environment variables also tended to be highly transferable. Transferability magnitude of the built environment variables for the ridership was related to PCA categories and types of public transport. (3) Compared to all the built environment variables, using TVs, the relative accuracy of the metro and taxi ridership estimation was around 20% and 18% higher respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.