Human endothelial cells respond to extracellular proteases, endotoxin (lipopolysaccharide, LPS), and inflammatory cytokines. Endothelial cells express several protease-activated receptors (PAR), including the thrombin-activated receptors PAR-1 and PAR-3 and a thrombin-independent, protease-activated receptor, PAR-2. To examine the potential cooperation between PAR and inflammatory stimuli, we investigated the effects of the PAR-1 agonist peptide Ser-Phe-Leu-Leu-Arg-Asn (SFLLRN) and PAR-2 agonist peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) on endothelial cells. Human umbilical vein endothelial cells (HUVEC) were cultured in vitro with SFLLRN or SLIGKV in the presence and absence of LPS or tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) levels in the culture supernatants were assayed. Both SFLLRN and SLIGKV induced detectable levels of IL-6 production in a dose-dependent fashion, with the PAR-1 receptor agonist being more potent. In the presence of all stimulatory concentrations of LPS or TNF-alpha tested, both peptides were found to further enhance IL-6 production. The effects of SFLLRN and SLIGKV were specific, as related peptides with identical amino acid compositions, but lacking in consensus sequences, were biologically inactive either alone or in the presence of LPS. Both the direct and the amplifying effects of PAR agonist peptides on IL-6 production were pertussis toxin sensitive and caused an increase in the intracellular levels of calcium, implicating G-proteins and calcium mobilization in these pathways. Furthermore, the amplifying effect of LPS or TNF-alpha on PAR-mediated cytokine production was associated with corresponding increases in nuclear NF-kappaB proteins. The results demonstrate significant potentiation of PAR-induced signaling by LPS and TNF-alpha and indicate the potential cooperation of proteases and inflammatory stimuli in amplifying vascular inflammation.
BACKGROUND: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8. AIMS: The objective of the present study was to identify candidate molecules and signal transduction pathways involved in the synergy between mast cell granules and lipopolysaccharide on endothelial cell activation. METHODS: Human umbilical vein endothelial cells were incubated with rat mast cell granules in the presence and absence of lipopolysaccharide, and IL-6 production was quantified. The status of c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2 activation, nuclear factor-kappaB translocation and intracellular calcium levels were determined to identify the mechanism of synergy between mast cell granules and lipopolysaccaride. RESULTS: Mast cell granules induced low levels of interleukin-6 production by endothelial cells, and this effect was markedly enhanced by lipopolysaccharide. The results revealed that both serine proteases and histamine present in mast cell granules were involved in this activation process. Mast cell granules increased intracellular calcium, and activated c-Jun amino-terminal kinase and extracellular signal-regulated kinase 1/2. The combination of lipopolysaccharide and mast cell granules prolonged c-Jun amino-terminal kinase activity beyond the duration of induction by either stimulant alone and was entirely due to active proteases. However, both proteases and histamine contributed to calcium mobilization and extracellular signal-regulated kinase 1/2 activation. The nuclear translocation of nuclear factor-kappaB proteins was of greater magnitude in endothelial cells treated with the combination of mast cell granules and lipopolysaccharide. CONCLUSIONS:Mast cell granule serine proteases and histamine can amplify lipopolysaccharide-induced endothelial cell activation, which involves calcium mobilization, mitogen-activated protein kinase activation and nuclear factor-kappaB translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.