Peptide ligand-induced dimerization of the extracellular region of the epidermal growth factor receptor (sEGFR) is central to the signal transduction of many cellular processes. A small molecule microarray screen has been developed to search for non-peptide compounds able to bind to sEGFR. We describe the discovery of nitro-benzoxadiazole (NBD) compounds that enhance tyrosine phosphorylation of EGFR and thereby trigger downstream signaling pathways and other receptor tyrosine kinases in cancer cells. The protein phosphorylation profile in cells exposed to NBD compounds is to some extent reminiscent of the profile induced by the cognate ligand. Experimental studies indicate that the small compounds bind to the dimerization domain of sEGFR, and generate stable dimers providing allosteric activation of the receptor. Moreover, receptor phosphorylation is associated with inhibition of PTP-1B phosphatase. Our data offer a promising paradigm for investigating new aspects of signal transduction mediated by EGFR in cancer cells exposed to electrophilic NBD compounds.
Porphyrins have a unique aromatic structure determining particular photochemical properties that make them promising photosensitizers for anticancer therapy. Previously, we synthesized a set of artificial porphyrins by modifying side-chain functional groups and introducing different metals into the core structure. Here, we have performed a comparative study of the binding properties of 29 cationic porphyrins with plasma proteins by using microarray and spectroscopic approaches. The porphyrins were noncovalently immobilized onto hydrogel-covered glass slides and probed to bio-conjugated human and bovine serum albumins, as well as to human hemoglobin. The signal detection was carried out at the near-infrared fluorescence wavelength (800 nm) that enabled the effect of intrinsic visible wavelength fluorescence emitted by the porphyrins tested to be discarded. Competition assays on porphyrin microarrays indicated that long-chain fatty acids (FAs) (palmitic and stearic acids) decrease porphyrin binding to both serum albumin and hemoglobin. The binding affinity of different types of cationic porphyrins for plasma proteins was quantitatively assessed in the absence and presence of FAs by fluorescent and absorption spectroscopy. Molecular docking analysis confirmed results that new porphyrins and long-chain FAs compete for the common binding site FA1 in human serum albumin and meso-substituted functional groups in porphyrins play major role in the modulation of conformational rearrangements of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.