CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Long noncoding RNAs (lncRNAs) can act as tumour suppressor or oncogenes to contrast/promote tumour cell proliferation via RNA-dependent mechanisms. Recently, genome sequencing has identified elevated densities of tumour somatic single nucleotide variants (SNVs) in lncRNA genes. However, this has been attributed to phenotypically-neutral “passenger” processes, and the existence of positively-selected fitness-altering “driver” SNVs acting via lncRNAs has not been addressed. We developed and used ExInAtor2, an improved driver-discovery pipeline, to map pancancer and cancer-specific mutated lncRNAs across an extensive cohort of 2583 primary and 3527 metastatic tumours. The 54 resulting lncRNAs are mostly linked to cancer for the first time. Their significance is supported by a range of clinical and genomic evidence, and display oncogenic potential when experimentally expressed in matched tumour models. Our results revealed a striking SNV hotspot in the iconic NEAT1 oncogene, which was ascribed by previous studies to passenger processes. To directly evaluate the functional significance of NEAT1 SNVs, we used in cellulo mutagenesis to introduce tumour-like mutations in the gene and observed a consequent increase in cell proliferation in both transformed and normal backgrounds. Mechanistic analyses revealed that SNVs alter NEAT1 ribonucleoprotein assembly and boost subnuclear paraspeckles. This is the first experimental evidence that mutated lncRNAs can contribute to the pathological fitness of tumour cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.