In recent years, numerous topologies of single phase and three phase Field Excited Flux-Switching Machine (FEFSM) have been developed for several applications. Comparative study of three types of single-phase low-priced Field Excited Flux-Switching Machine (FEFSM) is presented in this paper. Both the conventional 8S/4P sub-part rotor design and 6S/3P salient rotor design have an overlapped winding arrangements between armature coil and field excitation coil that depicts high copper losses as well as results in increased size of motor. Additionally, FEFSM with salient structure of the rotor have high flux strength in the stator-core that has much impact on high iron losses. Copper consumption and iron loss being a crucial proportion in total machine losses. Therefore a novel topology of single phase modular rotor field excited FSM with 8S/6P configuration is proposed, which enable non-overlap arrangement between armature coil and FEC winding that facilitates devaluation in the copper losses. The proposed modular rotor design acquires reduced iron losses as well as reduced active rotor mass comparatively to conventional rotor design. It is very persuasive to analyze the best range of speed for these rotors to avoid cracks and deformation, the maximum tensile strength (can be measured with principal stress in research) of the rotor analysis is conducted using JMAG. A deterministic optimization technique is used to enhance the performance of 8S/6P modular rotor design. The electromagnetic performance of conventional sub-part rotor design, F1-A3-3P design and proposed novel-modular rotor design are analyzed by 3D-Finite Element Analysis (3D-FEA), includes flux linkage, flux distribution, flux strength, back-EMF, cogging torque, torque characteristics, iron losses and efficiency.
This paper aims to propose and compare three new structures of single-phase field excited flux switching machine for pedestal fan application. Conventional six-slot/three-pole salient rotor design has better performance in terms of torque, whilst also having a higher back-EMF and unbalanced electromagnetic forces. Due to the alignment position of the rotor pole with stator teeth, the salient rotor design could not generate torque (called dead zone torque). A new structure having sub-part rotor design has the capability to eliminate dead zone torque. Both the conventional eight-slot/four-pole sub-part rotor design and six-slot/three-pole salient rotor design have an overlapped winding arrangement between armature coil and field excitation coil that depicts high copper losses as well as results in increased size of motor. Additionally, a field excited flux switching machine with a salient structure of the rotor has high flux strength in the stator-core that has considerable impact on high iron losses. Therefore, a novel topology in terms of modular rotor of single-phase field excited flux switching machine with eight-slot/six-pole configuration is proposed, which enable non-overlap arrangement between armature coil and FEC winding that facilitates reduction in the copper losses. The proposed modular rotor design acquires reduced iron losses as well as reduced active rotor mass comparatively to conventional rotor design. It is very persuasive to analyze the range of speed for these rotors to avoid cracks and deformation, the maximum tensile strength (can be measured with principal stress in research) of the rotor analysis is conducted using JMAG. A deterministic optimization technique is implemented to enhance the electromagnetic performance of eight-slot/six-pole modular rotor design. The electromagnetic performance of the conventional sub-part rotor design, doubly salient rotor design, and proposed novel-modular rotor design is analyzed by 3D-finite element analysis (3D-FEA), including flux linkage, flux distribution, flux strength, back-EMF, cogging torque, torque characteristics, iron losses, and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.