The increasing population creates excess pressure on the plantation and production of fruits and vegetables across the world. Consumption demand during the whole year has made production compulsory in the covered production system (greenhouse). Production, harvesting, processing, transporting, and distribution chains of fruit and vegetables have resulted in a huge amount of wastes as an alternative source to produce biofuels. In this study, optimization of two pretreatment processes (NaOH and HCl assisted thermal) was investigated to enhance methane production from fruit and vegetable harvesting wastes (FVHW) that originate from greenhouses. NaOH concentration (0–6.5%), HCl concentration (0–5%), reaction temperature (60–100 °C), solid content (1–5%), time of reaction (1–5 h), and mixing speed (0–500 rpm) were chosen in a wide range of levels to optimize the process in a broad design boundary and to evaluate the positive and negative impacts of independent variables along with their ranges. Increasing NaOH and HCl concentrations resulted in higher COD solubilization but decreased the concentration of soluble sugars that can be converted directly into methane. Thus, the increasing concentrations of NaOH and HCl in the pretreatments have resulted in low methane production. The most important independent variables impacting COD and sugar solubilization were found to be chemical concentration (as NaOH and HCl), solid content and reaction temperature for the optimization of pretreatment processes. The high amount of methane productions in the range of 222–365 mL CH4 gVS−1 was obtained by the simple thermal application without using chemical agents as NaOH or HCl. Maximum enhancement of methane production was 47–68% compared to raw FVHW when 5% solid content, 1-hour reaction time and 60–100 °C reaction temperature were applied in pretreatments.
Pretreatment and codigestion are proven to be effective strategies for the enhancement of the anaerobic digestion of lignocellulosic residues. The purpose of this study is to evaluate the effects of pretreatment and codigestion on methane production and the hydrolysis rate in the anaerobic digestion of agricultural wastes (AWs). Thermal and different thermochemical pretreatments were applied on AWs. Sewage sludge (SS) was selected as a cosubstrate. Biochemical methane potential tests were performed by mixing SS with raw and pretreated AWs at different mixing ratios. Hydrolysis rates were estimated by the best fit obtained with the first-order kinetic model. As a result of the experimental and kinetic studies, the best strategy was determined to be thermochemical pretreatment with sodium hydroxide (NaOH). This strategy resulted in a maximum enhancement in the anaerobic digestion of AWs, a 56% increase in methane production, an 81.90% increase in the hydrolysis rate and a 79.63% decrease in the technical digestion time compared to raw AWs. On the other hand, anaerobic codigestion (AcoD) with SS was determined to be ineffective when it came to the enhancement of methane production and the hydrolysis rate. The most suitable mixing ratio was determined to be 80:20 (Aws/SS) for the AcoD of the studied AWs with SS in order to obtain the highest possible methane production without any antagonistic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.