Coal macrolithotypes control the reservoir heterogeneity, which plays a significant role in the exploration and development of coalbed methane. Traditional methods for coal macrolithotype evaluation often rely on core observation, but these techniques are non-economical and insufficient. The geophysical logging data are easily available for coalbed methane exploration; thus, it is necessary to find a relationship between core observation results and wireline logging data, and then to provide a new method to quantify coal macrolithotypes of a whole coal seam. In this study, we propose a L-Index model by combing the multiple geophysical logging data with principal component analysis, and we use the L-Index model to quantitatively evaluate the vertical and regional distributions of the macrolithotypes of No. 3 coal seam in Zhengzhuang field, southern Qinshui basin. Moreover, we also proposed a S-Index model to quantitatively evaluate the general brightness of a whole coal seam: the increase of the S-Index from 1 to 3.7, indicates decreasing brightness, i.e., from bright coal to dull coal. Finally, we discussed the relationship between S-Index and the hydro-fracturing effect. It was found that the coal seam with low S-Index values can easily form long extending fractures during hydraulic fracturing. Therefore, the lower S-Index values indicate much more favorable gas production potential in the Zhengzhuang field. This study provides a new methodology to evaluate coal macrolithotypes by using geophysical logging data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.