The deposition of Cu seed layers for electrochemical Cu deposition (ECD) via atomic layer deposition (ALD) of copper oxide and subsequent thermal reduction at temperatures between 110 and 120°C was studied on different diffusion barrier systems. While optimization of the process is required on TaN with respect to reduction and plating, promising results were obtained on blanket PVD Ru. The plating results on layers of ALD Cu with underlying Ru even outperformed the ones achieved on PVD Cu seed layers with respect to morphology and resistivity. Applying the processes to via and line patterns gave similar results, suggesting that a combination of ALD Cu with PVD or ALD-grown Ru could significantly improve the ECD Cu growth.
This paper does two main contributions to 2D time‐dependent vector field topology. First, we present a technique for robust, accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time‐dependent vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction of DHTs and time‐dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows, as well as data from computational fluid dynamics.
This software paper gives an overview of the features supported by the Topology ToolKit (TTK), which is an open-source library for topological data analysis (TDA). TTK implements, in a generic and efficient way, a substantial collection of reference algorithms in TDA. Since its initial public release in 2017, both its user and developer bases have grown, resulting in a significant increase in the number of supported features. In contrast to the original paper introducing TTK [40] (which detailed the core algorithms and data structures of TTK), the purpose of this software paper is to describe the list of features currently supported by TTK, ranging from image segmentation tools to advanced topological analysis of high-dimensional data, with concrete usage examples available on the TTK website [42].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.