System NEL is the mixed commutative/non-commutative linear logic BV augmented with linear logic's exponentials, or, equivalently, it is MELL augmented with the non-commutative self-dual connective seq. System NEL is Turingcomplete, it is able to directly express process algebra sequential composition and it faithfully models causal quantum evolution. In this paper, we show cut elimination for NEL, based on a property that we call splitting. NEL is presented in the calculus of structures, which is a deep-inference formalism, because no Gentzen formalism can express it analytically. The splitting theorem shows how and to what extent we can recover a sequent-like structure in NEL proofs. Together with the decomposition theorem, proved in the previous paper of the series, this immediately leads to a cut-elimination theorem for NEL.
We present Intuitionistic Combinatorial Proofs (ICPs), a concrete geometric semantics of intuitionistic logic based on the principles of the second author's classical Combinatorial Proofs. An ICP naturally factorizes into a linear fragment, a graphical abstraction of an IMLL proof net (an arena net), and a parallel contraction-weakening fragment (a skew fibration). ICPs relate to game semantics, and can be seen as a strategy in a Hyland-Ong arena, generalized from a tree-like to a dag-like strategy. Our first main result, Polynomial Full Completeness, is that ICPs as a semantics are complexity-aware: the translations to and from sequent calculus are size-preserving (up to a polynomial). By contrast, lambda-calculus and game semantics incur an exponential blowup. Our second main result, Local Canonicity, is that ICPs abstract fully and faithfully over the non-duplicating permutations of the sequent calculus, analogously to the first and second authors' recent result for MALL.
International audienceWe investigate the enumeration of non-crossing tree realizations of integer sequences, and we consider a special case in four parameters, that can be seen as a four-dimensional tetrahedron that generalizes Pascal’s triangle and the Catalan numbers. This work is motivated by the study of ambiguities in categorial grammars
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.