We measured the ability of nine DNA vaccine plasmids encoding candidate malaria vaccine antigens to induce antibodies and interferon-g responses when delivered alone or in a mixture containing all nine plasmids. We further examined the possible immunosuppressive effect of individual plasmids, by assessing a series of mixtures in which each of the nine vaccine plasmids was replaced with a control plasmid. Given alone, each of the vaccine plasmids induced significant antibody titers and, in the four cases for which appropriate assays were available, IFN-g responses. Significant suppression or complete abrogation of responses were seen when the plasmids were pooled in a nine-plasmid cocktail and injected in a single site. Removal of single genes from the mixture frequently reduced the observed suppression. Boosting with recombinant poxvirus increased the antibody response in animals primed with either a single gene or the mixture, but, even after boosting, responses were higher in animals primed with single plasmids than in those primed with the nine-plasmid mixture. Boosting did not overcome the suppressive effect of mixing for IFN-g responses. Interactions between components in a multiplasmid DNA vaccine may limit the ability to use plasmid pools alone to induce responses against multiple targets simultaneously.
Several reports have previously shown that expression of the foot-and-mouth disease virus (FMDV) capsid precursor protein encoding region P1-2A together with the 3C protease (P1-2A/3C) results in correct processing of the capsid precursor into VP0, VP1 and VP3 and formation of FMDV capsid structures that are able to induce a protective immune response against FMDV challenge after immunization using naked DNA constructs or recombinant viruses. To elucidate whether bovine herpesvirus 1 (BHV-1) might also be suitable as a viral vector for empty capsid generation, we aimed to integrate a P1-2A/3C expression cassette into the BHV-1 genome, which, however, failed repeatedly. In contrast, BHV-1 recombinants that expressed an inactive 3C protease or the P1-2A polyprotein alone could be easily generated, although the recombinant that expressed P1-2A exhibited a defect in direct cell-cell spread and release of infectious particles. These results suggested that expression of the original, active FMDV 3C protease is not compatible with BHV-1 replication. This conclusion is supported by the isolation of recombinant BHV-1/3C*, which contained mutations within the 3C ORF (3C* ORF)--probably introduced spontaneously during generation of BHV-1/3C*--instead of the authentic 3C ORF contained in the transfer plasmids. Within the 3C* ORF, the codons for glycine 38 and phenylalanine 48 were both substituted by codons for serine. The resulting 3C* protease exhibits a highly reduced activity for proteolytic processing of the P1-2A polyprotein and thus might be a good candidate for the generation of live attenuated FMDV variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.