Although recovering an Euclidean distance matrix from noisy observations is a common problem in practice, how well this could be done remains largely unknown. To fill in this void, we study a simple distance matrix estimate based upon the so-called regularized kernel estimate. We show that such an estimate can be characterized as simply applying a constant amount of shrinkage to all observed pairwise distances. This fact allows us to establish risk bounds for the estimate implying that the true distances can be estimated consistently in an average sense as the number of objects increases. In addition, such a characterization suggests an efficient algorithm to compute the distance matrix estimator, as an alternative to the usual second order cone programming known not to scale well for large problems. Numerical experiments and an application in visualizing the diversity of Vpu protein sequences from a recent HIV-1 study further demonstrate the practical merits of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.