Observations suggest that enhanced turbulent dissipation and mixing over rough topography are modulated by the transient eddy field through the generation and breaking of lee waves in the Southern Ocean. Idealized simulations also suggest that lee waves are important in the energy pathway from eddies to turbulence. However, the energy loss from eddies due to lee wave generation remains poorly estimated. This study quantifies the relative energy loss from the time-mean and transient eddy flow in the Southern Ocean due to lee wave generation using an eddy-resolving global ocean model and three independent topographic datasets. The authors find that the energy loss from the transient eddy flow (0.12 TW; 1 TW = 1012 W) is larger than that from the time-mean flow (0.04 TW) due to lee wave generation; lee wave generation makes a larger contribution (0.12 TW) to the energy loss from the transient eddy flow than the dissipation in turbulent bottom boundary layer (0.05 TW). This study also shows that the energy loss from the time-mean flow is regulated by the transient eddy flow, and energy loss from the transient eddy flow is sensitive to the representation of anisotropy in small-scale topography. It is implied that lee waves should be parameterized in eddy-resolving global ocean models to improve the energetics of resolved flow.
The general circulation of the ocean is strongly constrained by the pathways that kinetic and available potential energy take from the basin-scale forces that inject them to centimeter scales, where they are depleted. To determine the ocean's response to future climate scenarios, these energy pathways, from forcing to dissipation, must be understood and quantified.Mesoscale eddies, with horizontal scales on the order of 100 km and timescales longer than many days, are well known as the dominant reservoir of kinetic energy (KE) in the oceans (Wunsch & Ferrari, 2004). But because their dynamics are constrained by an approximate geostrophic and hydrostatic force balance, they are characterized by an inverse KE cascade, and by themselves do not provide the necessary forward scale-transfer to dissipation (Müller et al., 2005). Possible mechanisms to interrupt the mesoscale inverse cascade include interaction with the bottom topography and boundary layer (
Lee waves play an important role in transferring energy from the geostrophic eddy field to turbulent mixing in the Southern Ocean. As such, lee waves can impact the Southern Ocean circulation and modulate its response to changing climate through their regulation on the eddy field and turbulent mixing. The drag effect of lee waves on the eddy field and the mixing effect of lee waves on the tracer field have been studied separately to show their importance. However, it remains unclear how the drag and mixing effects act together to modify the Southern Ocean circulation. In this study, a lee wave parameterization that includes both lee wave drag and its associated lee-wave-driven mixing is developed and implemented in an eddy-resolving idealized model of the Southern Ocean to simulate and quantify the impacts of lee waves on the Southern Ocean circulation. The results show that lee waves enhance the baroclinic transport of the Antarctic Circumpolar Current (ACC) and strengthen the lower overturning circulation. The impact of lee waves on the large-scale circulation are explained by the control of lee wave drag on isopycnal slopes through their effect on eddies, and by the control of lee-wave-driven mixing on deep stratification and water mass transformation. The results also show that the drag and mixing effects are coupled such that they act to weaken one another. The implication is that the future parameterization of lee waves in global ocean and climate models should take both drag and mixing effects into consideration for a more accurate representation of their impact on the ocean circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.