Background Teleultrasound provides an effective solution to problems that arise from limited medical resources, a lack of local expertise, and scenarios where the risk of infection is high. This study aims to explore the feasibility of the application of a 5G-powered robot-assisted teleultrasound diagnostic system in an intensive care unit. Methods In this study, the robot-assisted teleultrasound diagnostic system MGIUS-R3 was used. Using 5G network technology, the doctor manipulates the robotic arm to perform teleultrasound examination. The doctor can adjust parameters via the teleultrasound control panel, and real-time transmission of audio, video and ultrasound images can facilitate simultaneous communication between both parties. All patients underwent robot-assisted teleultrasound examination and bedside ultrasound examination of the liver, gallbladder, pancreas, spleen, kidney, as well as assessment for pleural effusion and abdominal effusion. We evaluated the feasibility of the application of the robot-assisted teleultrasound diagnosis system in the intensive care unit in terms of consultation duration, image quality, and safety. We also compared diagnostic consistency and differences. Results Apart from one patient who was excluded due to severe intestinal gas interference and poor image quality, a total of 32 patients were included in this study. Every patient completed all relevant examinations. Among them, 20 patients were male; 12 were female. The average age of the patients was 61 ± 20 years. The average duration of teleultrasound diagnosis was 17 ± 7 min. Of the 32 patients, 26 had positive results, 6 had negative results, and 5 had inconsistent diagnoses. The overall diagnostic results were basically the same, and there were no differences in diagnostic levels between the two. The overall average image quality score was 4.73 points, which represented a high-quality image. After robot-assisted teleultrasound examination, no significant changes were observed in the vital signs of patients as compared to before examination, and no examination-related complications were found. Conclusion The 5G-powered robot-assisted teleultrasound diagnostic system was associated with the benefits of clear images, simple operation, relatively high levels of consistency in terms of diagnostic results, higher levels of safety, and has considerable application value in the intensive care unit.
Ovarian cancer is one of the most common gynecologic cancers that has the highest mortality rate. Endometrioid ovarian cancer, a distinct subtype of epithelial ovarian cancer, is associated with endometriosis and Lynch syndrome, and is often accompanied by synchronous endometrial carcinoma. In recent years, dysbiosis of the microbiota within the female reproductive tract has been suggested to be involved in the pathogenesis of endometrial cancer and ovarian cancer, with some specific pathogens exhibiting oncogenic having been found to contribute to cancer development. It has been shown that dysregulation of the microenvironment and accumulation of mutations are stimulatory factors in the progression of endometrioid ovarian carcinoma. This would be a potential therapeutic target in the future. Simultaneously, multiple studies have demonstrated the role of four molecular subtypes of endometrioid ovarian cancer, which are of particular importance in the prediction of prognosis. This literature review aims to compile the potential mechanisms of endometrioid ovarian cancer, molecular characteristics, and molecular pathological types that could potentially play a role in the prediction of prognosis, and the novel therapeutic strategies, providing some guidance for the stratified management of ovarian cancer.
Background China has a vast territory, and the quality of health care services provided, especially transthoracic echocardiography (TTE), in remote regions is still low. Patients usually need to travel long distances to tertiary care centers for confirmation of a diagnosis. Considering the rapid development of high-speed communication technology, telemedicine will be a significant technology for improving the diagnosis and treatment of patients at secondary care hospitals. Objective This study aimed to discuss the feasibility and perceived clinical value of a synchronized, real-time, interactive, remote TTE consultation system based on cloud computing technology. Methods By using the cloud computing platform coupled with unique dynamic image coding and decoding and synchronization technology, multidimensional communication information in the form of voice, texts, and pictures was integrated. A remote TTE consultation system connecting Henan Provincial People’s Hospital and two county-level secondary care hospitals located 300 km away was developed, which was used for consultation with 45 patients. Results This remote TTE consultation system achieved remote consultation for 45 patients. The total time for consultation was 341.31 min, and the mean time for each patient was 7.58 (SD 6.17) min. Among the 45 patients, 3 were diagnosed with congenital heart diseases (7%) and 42 were diagnosed with acquired heart diseases (93%) at the secondary care hospitals. After expert consultation, the final diagnosis was congenital heart diseases in 5 patients (11%), acquired heart disease in 34 patients (76%), and absence of heart abnormalities in 6 patients (13%). Compared with the initial diagnosis at secondary care hospitals, remote consultation using this system revealed new abnormalities in 7 patients (16%), confirmation was obtained in 6 patients (13%), and abnormalities were excluded in 6 patients (13%). The expert opinions agreed with the initial diagnosis in the remaining 26 patients (58%). In addition, several questions about rare illnesses raised by the rural doctors at the secondary care hospitals were answered. Conclusions The synchronized real-time interactive remote TTE consultation system based on cloud computing service and unique dynamic image coding and decoding technology had high feasibility and applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.