The soluble solids content (SSC) affects the flavor of green plums and is an important parameter during processing. In recent years, the hyperspectral technology has been widely used in the nondestructive testing of fruit ingredients. However, the prediction accuracy of most models can hardly be improved further. The rapid development of deep learning technology has established the foundation for the improvement of building models. A new hyperspectral imaging system aimed at measuring the green plum SSC is developed, and a sparse autoencoder (SAE)–partial least squares regression (PLSR) model is combined to further improve the accuracy of component prediction. The results of the experiment show that the SAE–PLSR model, which has a correlation coefficient of 0.938 and root mean square error of 0.654 for the prediction set, can achieve better performance for the SSC prediction of green plums than the three traditional methods. In this paper, integration approaches have combined three different pretreatment methods with PLSR to predict the SSC in green plums. The SAE–PLSR model has shown good prediction performance, indicating that the proposed SAE–PLSR model can effectively detect the SSC in green plums.
The acidity of green plum has an important influence on the fruit’s deep processing. Traditional physical and chemical analysis methods for green plum acidity detection are destructive, time-consuming, and unable to achieve online detection. In response, a rapid and non-destructive detection method based on hyperspectral imaging technology was studied in this paper. Research on prediction performance comparisons between supervised learning methods and unsupervised learning methods is currently popular. To further improve the accuracy of component prediction, a new hyperspectral imaging system was developed, and the kernel principle component analysis—linear discriminant analysis—extreme gradient boosting algorithm (KPCA-LDA-XGB) model was proposed to predict the acidity of green plum. The KPCA-LDA-XGB model is a supervised learning model combined with the extreme gradient boosting algorithm (XGBoost), kernel principal component analysis (KPCA), and linear discriminant analysis (LDA). The experimental results proved that the KPCA-LDA-XGB model offers good acidity predictions for green plum, with a correlation coefficient (R) of 0.829 and a root mean squared error (RMSE) of 0.107 for the prediction set. Compared with the basic XGBoost model, the KPCA-LDA-XGB model showed a 79.4% increase in R and a 31.2% decrease in RMSE. The use of linear, radial basis function (RBF), and polynomial (Poly) kernel functions were also compared and analyzed in this paper to further optimize the KPCA-LDA-XGB model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.