Financial flow is an important part of supply chain management (SCM) and increasingly playing a crucial role as the amount of global trade increases. Reasonable and scientific financial operation is necessary in closed-loop supply chain management, especially when customer demand is uncertain. However, financial flow, which may lead to an increase in effectiveness, has rarely been considered in the literature. In this paper, we present a closed-loop supply chain design with financial management problem, which is tackled as a stochastic programming model with ambiguity demand set. The main contributions of this work include: (i) A joint chance constrained programming model is proposed to maximize the total profit, and (ii) financial flow and uncertain demand are both taken into consideration. According to the characteristic of the problem, we chose four approaches, namely sample average approximation (SAA), enhanced sample average approximation (ESAA), Markov approximation (MA), and mixed integer second-order conic program (MI-SOCP). Computational experiments were conducted to compare the adopted methods, and 10,000 scenarios were generated to examine the reliability of the methods. Numerical results revealed that the Markov approximation approach can achieve more reliable solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.