Natural articular cartilage has ultralow friction even at high squeezing pressure. Biomimicking cartilage with soft materials has been and remains a grand challenge in the fields of materials science and engineering. Inspired by the unique structural features of the articular cartilage, as well as by its remarkable lubrication mechanisms dictated by the properties of the superficial layers, a novel archetype of cartilage-mimicking bilayer material by robustly entangling thick hydrophilic polyelectrolyte brushes into the subsurface of a stiff hydrogel substrate is developed. The topmost soft polymer layer provides effective aqueous lubrication, whereas the stiffer hydrogel layer used as a substrate delivers the load-bearing capacity. Their synergy is capable of attaining low friction coefficients (order 0.010) under heavily loaded conditions (order 10 MPa contact pressure) in water environment, a performance incredibly close to that of natural articular cartilage. The bioinspired material can maintain low friction even when subjected to 50k reciprocating cycles under high contact pressure, with almost no wear observed on the sliding track. These findings are theoretically explained and compounded by multiscale simulations used to shed light on the mechanisms responsible for this remarkable performance. This work opens innovative technology routes for developing cartilage-mimicking ultralow friction soft materials.
Drag reduction of up to 77.2% is achieved with air rings confined by alternating superhydrophobic and hydrophilic strips.
BackgroundAldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths.ResultsBased on the crystal structures of cADOs (cyanobacterial ADO) with substrate analogs bound, some amino acids affecting the substrate specificity of cADO were identified, including the amino acids close to the aldehyde group and the hydrophobic tail of the substrate and those along the substrate channel. Using site-directed mutagenesis, selected amino acids were replaced with bulky ones introducing steric hindrance to the binding pocket via large functional groups. All mutants were overexpressed, purified and kinetically characterized. All mutants, except F87Y, displayed dramatically reduced activity towards C14,16,18 aldehydes. Notably, the substrate preferences of some mutants towards different chain-length substrates were enhanced: I24Y for n-heptanal, I27F for n-decanal and n-dodecanal, V28F for n-dodecanal, F87Y for n-decanal, C70F for n-hexanal, A118F for n-butanal, A121F for C4,6,7 aldehydes, V184F for n-dodecanal and n-decanal, M193Y for C6–10 aldehydes and L198F for C7–10 aldehydes. The impact of the engineered cADO mutants on the change of the hydrocarbon profile was demonstrated by co-expressing acyl-ACP thioesterase BTE, fadD and V184F in E. coli, showing that n-undecane was the main fatty alkane.ConclusionsSome amino acids, which can control the chain-length selectivity of substrates of cADO, were identified. The substrate specificities of cADO were successfully changed through structure-guided protein engineering, and some mutants displayed different chain-length preference. The in vivo experiments of V184F in genetically engineered E. coli proved the importance of engineered cADOs on the distribution of the fatty alkane profile. The results would be helpful for the production of fatty alk(a/e)nes in cyanobacteria with different properties.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0596-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.