A detailed understanding of genetic architecture of mRNA expression by millions of genetic variants is important for studying quantitative trait variation. In this study, we identified 1.25M SNPs with a minor allele frequency greater than 0.05 by combining reduced genome sequencing (GBS), high-density array technologies (600K), and previous deep RNA-sequencing data from 368 diverse inbred lines of maize. The balanced allelic frequencies and distributions in a relatively large and diverse natural panel helped to identify expression quantitative trait loci (eQTLs) associated with more than 18 000 genes (63.4% of tested genes). We found that distant eQTLs were more frequent (∼75% of all eQTLs) across the whole genome. Thirteen novel associated loci affecting maize kernel oil concentration were identified using the new dataset, among which one intergenic locus affected the kernel oil variation by controlling expression of three other known oil-related genes. Altogether, this study provides resources for expanding our understanding of cellular regulatory mechanisms of transcriptome variation and the landscape of functional variants within the maize genome, thereby enhancing the understanding of quantitative variations.
Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10−8 ~3.87 × 10−8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.
Background: Identifying genotype-phenotype links and causative genes from quantitative trait loci (QTL) is challenging for complex agronomically important traits. To accelerate maize gene discovery and breeding, we present the Complete-diallel design plus Unbalanced Breeding-like Inter-Cross (CUBIC) population, consisting of 1404 individuals created by extensively inter-crossing 24 widely used Chinese maize founders. Results: Hundreds of QTL for 23 agronomic traits are uncovered with 14 million high-quality SNPs and a high-resolution identity-by-descent map, which account for an average of 75% of the heritability for each trait. We find epistasis contributes to phenotypic variance widely. Integrative cross-population analysis and cross-omics mapping allow effective and rapid discovery of underlying genes, validated here with a case study on leaf width. Conclusions: Through the integration of experimental genetics and genomics, our study provides useful resources and gene mining strategies to explore complex quantitative traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.