Background Mitochondria play critical roles in cellular physiological activity as cellular organelles. Under extracellular stimulation, mitochondria undergo constant fusion and fission to meet different cellular demands. Mitochondrial dynamics, which are involved in mitochondrial fusion and fission, are regulated by specialized proteins and lipids, and their dysregulation causes human diseases, such as cancer. The advanced literature about the crucial role of mitochondrial dynamics in breast cancer is performed. Methods All related studies were systematically searched through online databases (PubMed, Web of Science, and EMBASE) using keywords (e.g., breast cancer, mitochondrial, fission, and fusion), and these studies were then screened through the preset inclusion and exclusion criteria. Results Eligible studies (n = 19) were evaluated and discussed in the systematic review. These advanced studies established the roles of mitochondrial fission and fusion of breast cancer in the metabolism, proliferation, survival, and metastasis. Importantly, the manipulating of mitochondrial dynamic is significant for the progresses of breast cancer. Conclusion Understanding the mechanisms underlying mitochondrial fission and fusion during tumorigenesis is important for improving breast cancer treatments.
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.