Facing the scientific question of the origin of chirality in life, water is considered to play a crucial role in driving many biologically relevant processes in vivo. Water has been demonstrated in vitro to be related to chiral generation, amplification, and inversion, while the underlying mechanism is still not fully understood. Real-space evidence at the single-molecule level is thus urgently required to understand the role of water molecules in biomolecular chirality related issues. Herein, we choose one of the RNA bases, the biomolecule uracil (U), which selfassembles into racemic hydrogen-bonded structures. Upon water exposure, surprisingly, racemic structures could be transformed to homochiral waterinvolved structures, resulting in an unexpected chiral separation on the surface. The origin of chiral separation is due to preferential binding between water and the specific site of U molecules, which leads to the formation of the energetically most favorable homochiral (U−H 2 O−U) 2 cluster as seed for subsequent chiral amplification. Such a water-driven self-assembly process may also be extended to other biologically relevant systems such as amino acids and sugars, which would provide general insights into the role that water molecules may play in the origin of homochirality in vivo.
Water, as one of the most important and indispensable small molecules in vivo, plays a crucial role in driving biological self-assembly processes. Real-space detection and identification of water-induced organic structures and further capture of dynamic dehydration processes are important yet challenging, which would help to reveal the cooperation and competition mechanisms among water-involved noncovalent interactions. Herein, introduction of water molecules onto the self-assembled thymine (T) structures under ultrahigh vacuum (UHV) conditions results in the hydration of hydrogen-bonded T dimers forming a well-ordered water-involved T structure. Reversibly, a local dehydration process is achieved by in situ scanning tunneling microscopy (STM) manipulation on single water molecules, where the adjacent T dimers connected with water molecules undergo a local chiral inversion process with the hydrogen-bonding configuration preserved. Such a strategy enables real-space identification and detection of the interactions between water and organic molecules, which may also shed light on the understanding of biologically relevant self-assembly processes driven by water.
The involvement of metal atoms in molecular assemblies has enriched the structural and functional diversity of two-dimensional supramolecular networks, where metal atoms are incorporated into the architecture via coordination or ionic bonding. Here we present a temperature-variable study of the self-assembly of the 1,3,5-tribromobenzene (TriBB) molecule on Cu(111) that reveals the involvement of nonbonded adatoms in the molecular matrix. By means of scanning tunneling microscopy and noncontact atomic force microscopy, we demonstrate the molecular-level details of a phase transition of TriBB assembly from the close-packed to porous honeycomb structures at 78 K. This is an unexpected transformation because the close-packed phase is thermodynamically favored in view of its higher molecular density and more intermolecular bonds as compared to the honeycomb lattice. A comprehensive density functional theory calculation suggests that Cu adatoms should be involved in the formation of the honeycomb network, where the Cu adatoms help stabilize the molecular assembly via enhanced van der Waals interactions between TriBB molecules and the underlying substrate. Both calculation and experimental results suggest no chemical bonding or direct charge transfer between the adatoms and the molecules, thus the electronic characteristics of the Cu adatoms trapped in the molecular confinement are close to the intrinsic ones on a clean metal surface and different from those in the traditional coordination-bonded framework. The nonbonded metal adatoms embedded self-assemblies may complement the metal–organic coordination system and can be used to tailor the chemical reactivity and electronic properties of supramolecular structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.