Heart failure (HF) is a serious condition in which the support of blood pumped by the heart is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 26 million patients worldwide are suffering from heart failure and about 17–45% of patients with heart failure die within 1-year, and the majority die within 5-years admitted to a hospital. The molecular mechanisms underlying the progression of heart failure have been poorly studied. We compared the gene expression profiles between patients with heart failure (
n
= 177) and without heart failure (
n
= 136) using multiple feature selection strategies and identified 38 HF signature genes. The support vector machine (SVM) classifier based on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great performance with sensitivity of 0.983 and specificity of 0.963. The network analysis suggested that the hub gene
SMOC2
may play important roles in HF. Other genes, such as
FCN3
,
HMGN2
, and
SERPINA3
, also showed great promises. Our results can facilitate the early detection of heart failure and can reveal its molecular mechanisms.
Acute myocardial infarction (AMI) is myocardial necrosis caused by the persistent interruption of myocardial blood supply, which has high incidence rate and high mortality in middle-aged and elderly people in the worldwide. Biomarkers play an important role in the early diagnosis and treatment of AMI. Recently, more and more researches confirmed that circRNA may be a potential diagnostic biomarker and therapeutic target for cardiovascular diseases. In this paper, a series of biological analyses were performed to find new effective circRNA biomarkers for AMI. Firstly, the expression levels of circRNAs in blood samples of patients with AMI and those with mild coronary stenosis were compared to reveal circRNAs which were involved in AMI. Then, circRNAs which were significant expressed abnormally in the blood samples of patients with AMI were selected from those circRNAs. Next, a ceRNA network was constructed based on interactions of circRNA, miRNA and mRNA through biological analyses to detect crucial circRNA associated with AMI. Finally, one circRNA was selected as candidate biomarker for AMI. To validate effectivity and efficiency of the candidate biomarker, fluorescence in situ hybridization, hypoxia model of human cardiomyocytes, and knockdown and overexpression analyses were performed on candidate circRNA biomarker. In conclusion, experimental results demonstrated that the candidate circRNA was an effective biomarker for diagnosis and therapy of AMI.
Background and Objective. Atrial fibrillation (AF) is linked to high morbidity and death rates throughout the world due to limited therapeutic options and thus presents a major challenge to the developed and developing countries. In this study, we aim to investigate the influence of sacubitril/valsartan (sac/val) treatment on the calmodulin-dependent protein kinase II (CaMKII)/Cav1.2 expression in AF models. Methods. Overall, 18 rabbits were randomly divided into control, pacing (600 beats/min), and pacing+sac/val groups. The rabbits in the pacing+sac/val cohort received oral sac/val (10 mg/kg twice daily) across the 21-day investigation period. After three weeks, the atrial effective refractory period (AERP) and AF induction rate were compared. HL-1 cultures were exposed to fast pacing (24 h) with and without LBQ657 (active sacubitril form)/valsartan. Western blots were used for detecting Cav1.2 and CaMKII expression within atrial muscles of the rabbits and HL-1 cultures of AF model. Results. In comparison to the sham cohort, the AF induction rate was markedly increased together with AERP reduction within pacing cohort. Such changes were markedly rescued through sac/val treatment in pacing+sac/val cohort. The proteomic expression profiles of CaMKII and Cav1.2 showed that the CaMKII expression was markedly upregulated, while Cav1.2 expression was downregulated in the pacing cohort. Importantly, these effects were absent in pacing+sac/val cohort. Conclusion. Results of this study show that sac/val treatment regulates the expression of CaMKII/Cav1.2 and could alter this pathway in atrial rapid electrical stimulation models. Therefore, this investigation could contribute to a novel strategy in AF therapeutics in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.