Since the successful synthesis of the first MXenes, application developments of this new family of two-dimensional materials on energy storage, electromagnetic interference shielding, transparent conductive electrodes and field-effect transistors, and other applications have been widely reported. However, no one has found or used the basic characteristics of greatly changed interlayer distances of MXene under an external pressure for a real application. Here we report a highly flexible and sensitive piezoresistive sensor based on this essential characteristics. An in situ transmission electron microscopy study directly illustrates the characteristics of greatly changed interlayer distances under an external pressure, supplying the basic working mechanism for the piezoresistive sensor. The resultant device also shows high sensitivity (Gauge Factor ~ 180.1), fast response (<30 ms) and extraordinarily reversible compressibility. The MXene-based piezoresistive sensor can detect human being’s subtle bending-release activities and other weak pressure.
Recently, wearable and flexible pressure sensors have sparked tremendous research interest, and considerable applications including human activity monitoring, biomedical research, and artificial intelligence interaction are reported. However, the large-scale preparation of low-cost, high-sensitivity piezoresistive sensors still face huge challenges. Inspired by the specific structures and excellent metal conductivity of a family of two-dimensional (2D) transition-metal carbides and nitrides (MXene) and the high-performance sensing effect of human skin including randomly distributed microstructural receptors, we fabricate a highly sensitive MXene-based piezoresistive sensor with bioinspired microspinous microstructures formed by a simple abrasive paper stencil printing process. The obtained piezoresistive sensor shows high sensitivity (151.4 kPa −1 ), relatively short response time (<130 ms), subtle pressure detection limit of 4.4 Pa, and excellent cycle stability over 10,000 cycles. The mechanism of the high sensitivity of the sensor is dynamically revealed from the structural perspective by means of in situ electron microscopy experiment and finite element simulation. Bioinspired microspinous microstructures can effectively improve the sensitivity of the pressure sensor and the limit of the detectable subtle pressure. In practice, the sensor shows great performance in monitoring human physiological signals, detecting quantitatively pressure distributions, and remote monitoring of intelligent robot motion in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.