Background: Diabetic nephropathy (DN) is the leading cause of morbidity and mortality in diabetic patients. Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra, possesses anti-oxidative, anti-hypertensive, anti-inflammatory capacities. In this study, the maintenance role of Tet in DN was evaluated in streptozotocin (STZ)-induced diabetic rats.Methods: In vitro study, rats were divided into five groups (n=10): the control group, the DN model group, the Tet-treatment group (5, 15, 30 mg/kg). DN damage was assessed by levels of blood glucose, serum creatinine (CRE), proteinuria, and urea nitrogen. ELISA assay was used to detecte tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and IL-10 levels. Kits were used to detecte contents of malondialdehyde (MDA), lactate dehydrogenase (LDH) and superoxide dismutase (SOD). Dichlorofluorescein (DCF) staining was used to detecte reactive oxygen species (ROS). HE staining assessed pathological damage. TUNEL staining assessed tissue apoptosis. Western Blot (WB) was used to detecte levels of Ki67, Survivin, Bax, Bcl-2, caspase-3, -9, c-Myc, nuclear factor erythroid-derived 2-related factor 2 (Nrf2), p-Nrf2, and heme oxygenase-1 (HO-1).Results: Compared with the control group, STZ-induced significantly inhibited proliferation proteins' level, activated oxidative stress, aggravated tissue inflammation and promoted tissue apoptosis. STZ-induced further aggravated DN damage. Of note, these anomalies were restored by Tet pretreatment. Additionally, Tet upgraded the expression of p-Nrf2 and HO-1.Conclusions: These results indicated that Tet could significantly restrain diabetic process and renal damage. Tet is a potential therapeutic agent in DN treatment via the reactivation of the Nrf2/HO-1.
Flow-diverting stent is an ongoing embolization device to treat cerebral aneurysms, and it diverts the flow direction to reduce the flow velocity inside the aneurysmal sacs and promote the thrombus formation. However, its effect for aneurysm embolization is controversial. A hemodynamic-biomedical coupling model was constructed to describe the generation and transport of thrombin in arteries, and the model was applied to investigate the variation of thrombin concentration, which plays a key role in thrombus formation, in two patient-specific cerebral aneurysm models when they are treated with Pipeline flow diverting stents. It is observed from computational fluid dynamics simulations that thrombin concentration in the aneurysmal sac without collateral artery increases significantly after Pipeline implantation, however, it has hardly any variation in the aneurysmal sac without collateral artery or in the giant aneurysmal sac after Pipeline implantation. Therefore, we believe that single Pipeline is very effective to embolize a small aneurysm without collateral artery, but cannot embolize a giant aneurysm or a small aneurysm with a collateral artery on its sac effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.