How diversity arises and what is the relative role of allopatric and ecological divergence are among the most persistent questions in evolution and ecology. Here, we assessed whether ecological divergence has enhanced the diversification of the Neotropical alpine plant complex Espeletia, also known as frailejones. This genus has one of the highest diversification rates ever reported and is distributed in the world’s fastest evolving biodiversity hotspot, the Páramo (Neotropical alpine grasslands at elevations of c. 2800–4700 m). Our goal was to determine whether ecology plays a role in divergence within the Espeletia complex by quantifying genome-wide patterns of ecological divergence. We characterized 162 samples of the three most common and contrasting ecotypes (distinct morphotypes occupying particular habitats) co-occurring in six localities in the northern Andes using Genotyping by Sequencing. Contrasting ecotypes were caulescent cloud forest populations, caulescent populations from wind-sheltered and well-irrigated depressions and acaulescent populations from wind-exposed drier slopes. We found high polymorphism with a total of 1,273 single nucleotide polymorphisms (SNPs) that defined the relationships among nine genetic clusters. We quantified allelic associations of these markers with localities and habitats using 18 different general and mixed-effects statistical models that accounted for phylogenetic distance. Despite that these models always yielded more SNPs associated with the localities, markers associated with the habitat types were recovered too. We found strong evidence for isolation-by-distance (IBD) across populations despite rampant gene flow, as expected for plant groups with limited seed dispersal. Contrasts between populations of different habitat types showed that an isolation-by-environment (IBE) trend emerged and masked the IBD signal. Maximum likelihood estimation of the number of migrants per generation (Nem) among ecotypes confirmed the IBE pattern. This result illustrates the importance of mountains’ environmental variation at a local scale in generating rapid morphological radiations and maintaining multiple adaptations in a fast-evolving ecosystem like the Páramo.
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is considered a major constraint in the production of common bean (Phaseolus vulgaris L.). This study aimed to evaluate, in a backcross plant‐breeding program, the efficiency of selecting plants resistant to anthracnose using marker‐assisted selection (MAS) for two resistance genes, Co‐5 and Co‐42 derived from the resistance source G2333 based on the linked PCR based markers SAB3 and SAS13. The amplification of both markers was compared using DNAs extracted with two techniques, alkaline extraction, which is a fast, and inexpensive method for high throughput screening; versus a proteinase K based miniprep extraction, which is more time consuming but provides more DNA. To further evaluate the effectiveness of the markers in selecting for resistance, we compared the marker genotypes and observed phenotypes for 266 plants from eight backcross families inoculated with a field isolate of anthracnose. The Co‐5 gene and SAB3 proved to be useful and the markers associated with Co‐5 and Co‐42 could be pyramided to give added levels of anthracnose resistance.
Common bean production is constrained by many fungal, viral, and bacterial pathogens. Thus, the identification of resistance (R) genes is an important focal point of common bean research. The main goal of our study was to identify resistance gene homologues (RGH) in the crop, using degenerate primers designed from conserved sequences in the nucleotide-binding site (NBS) domains of R-genes from the model legume Medicago truncatula. Total DNA of the Andean common bean genotype G19833 was used for amplification of over 500 primer combinations. Sequencing of amplicons showed that 403 cloned fragments had uninterrupted open reading frames and were considered representative of functional RGH genes. The sequences were grouped at two levels of nucleotide identity (90 and 80%) and representative sequences of each group were used for phylogenetic analyses. The RGH sequence diversity of common bean was divided into TIR and non-TIR families, each with different clusters. The TIR sequences grouped into 14 clades while non-TIR sequences grouped into seven clades. Pairwise comparisons showed purifying selection, although some sequences may have been the result of diversifying selection. Knowledge about RGH genes in common bean can allow the design of molecular markers for pyramiding of resistance genes against various pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.