Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.
Smoking-related lung diseases are among the leading causes of death worldwide, underscoring the need to understand their pathogenesis and develop new effective therapies. We have shown that CD1a+ antigen-presenting cells (APCs) from lungs of patients with emphysema can induce autoreactive T helper 1 (TH1) and TH17 cells. Similarly, the canonical cytokines interferon-γ (IFN-γ) and interleukin-17A (IL-17A) are specifically linked to lung destruction in smokers, but how smoke activates APCs to mediate emphysema remains unknown. Here, we show that, in addition to increasing IFN-γ expression, cigarette smoke increased the expression of IL-17A in both CD4+ and γδ T cells from mouse lung. IL-17A deficiency resulted in attenuation of, whereas lack of γδ T cells exacerbated, smoke-induced emphysema in mice. Adoptive transfer of lung APCs isolated from mice with emphysema revealed that this cell population was capable of transferring disease even in the absence of active smoke exposure, a process that was dependent on IL-17A expression. Spp1 (the gene for osteopontin) was highly expressed in the pathogenic lung APCs of smoke-exposed mice and was required for the TH17 responses and emphysema in vivo, in part through its inhibition of the expression of the transcription factor Irf7. Thus, the Spp1-Irf7 axis is critical for induction of pathological TH17 responses, revealing a major mechanism by which smoke activates lung APCs to induce emphysema and identifying a pathway that could be targeted for therapeutic purposes.
Exposure to tobacco smoke activates innate and adaptive immune responses that in long-term smokers have been linked to diseases of the lungs, cardiovascular system, joints, and other organs. The destruction of lung tissue that underlies smoking-induced emphysema has been associated with T helper 1 cells that recognize the matrix protein elastin. Factors that result in the development of such autoreactive T cells in smokers remain unknown but are crucial for further understanding the pathogenesis of systemic inflammatory diseases in smokers. Here, we show that lung myeloid dendritic cells were sufficient to induce T helper 1 and T helper 17 responses in CD4 T cells. T helper 1 and 17 cells are invariably present in lungs from patients with emphysema but not in lungs from normal individuals. Interleukin-17A, a canonical T helper 17 cytokine, enhanced secretion of CCL20, a chemoattractant for dendritic cells, and matrix metalloproteinase 12, a potent elastolytic proteinase, from lung macrophages. Thus, although diverse lung factors potentially contribute to T helper effector differentiation in vivo, lung myeloid dendritic cells direct the generation of pathogenic T cells and support a feedback mechanism that sustains both inflammatory cell recruitment and lung destruction. This mechanism may underlie disease in other elastin-rich organs and tissues.
The DNA binding protein methyl-CpG binding protein 2 (MeCP2) critically influences neuronal and brain function by modulating gene expression, and children with overexpression of the MECP2 gene exhibit postnatal neurological syndromes. We demonstrate that some children with MECP2 duplication also display variable immunological abnormalities that include reductions in memory T and B cells and natural killer cells and immunoglobulin assay responses. Moreover, whereas mice with MeCP2 overexpression were unable to control infection with the intra-macrophage parasite Leishmania major and secrete interferon-γ (IFN-γ) from involved lymph nodes, they were able to control airway fungal infection by Aspergillus niger and mount protective T helper cell type 2 (TH2)–dependent allergic responses. Relative to normal T cells, TH cells from children and mice with MECP2 duplication displayed similar impairments in IFN-γ secretion and TH1 responses that were due to both MeCP2-dependent suppression of IFN-γ transcription and sequestration of the IFN-γ locus as assessed by chromatin immunoprecipitation assay. Thus, overexpressed MeCP2 aberrantly suppresses IFN-γ secretion from TH cells, potentially leading to a partially immunodeficient state. Our findings establish a rational basis for identifying, treating, and preventing infectious complications potentially affecting children with MECP2 duplication.
Background-Tobacco related lung diseases including chronic obstructive pulmonary disease (COPD), are major causes of lung-related disability and death worldwide. Acute exacerbation of COPD (AE-COPD) is commonly associated with upper and lower respiratory viral infections and may result in respiratory failure in those with advanced lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.