Smoking-related lung diseases are among the leading causes of death worldwide, underscoring the need to understand their pathogenesis and develop new effective therapies. We have shown that CD1a+ antigen-presenting cells (APCs) from lungs of patients with emphysema can induce autoreactive T helper 1 (TH1) and TH17 cells. Similarly, the canonical cytokines interferon-γ (IFN-γ) and interleukin-17A (IL-17A) are specifically linked to lung destruction in smokers, but how smoke activates APCs to mediate emphysema remains unknown. Here, we show that, in addition to increasing IFN-γ expression, cigarette smoke increased the expression of IL-17A in both CD4+ and γδ T cells from mouse lung. IL-17A deficiency resulted in attenuation of, whereas lack of γδ T cells exacerbated, smoke-induced emphysema in mice. Adoptive transfer of lung APCs isolated from mice with emphysema revealed that this cell population was capable of transferring disease even in the absence of active smoke exposure, a process that was dependent on IL-17A expression. Spp1 (the gene for osteopontin) was highly expressed in the pathogenic lung APCs of smoke-exposed mice and was required for the TH17 responses and emphysema in vivo, in part through its inhibition of the expression of the transcription factor Irf7. Thus, the Spp1-Irf7 axis is critical for induction of pathological TH17 responses, revealing a major mechanism by which smoke activates lung APCs to induce emphysema and identifying a pathway that could be targeted for therapeutic purposes.
Exposure to tobacco smoke activates innate and adaptive immune responses that in long-term smokers have been linked to diseases of the lungs, cardiovascular system, joints, and other organs. The destruction of lung tissue that underlies smoking-induced emphysema has been associated with T helper 1 cells that recognize the matrix protein elastin. Factors that result in the development of such autoreactive T cells in smokers remain unknown but are crucial for further understanding the pathogenesis of systemic inflammatory diseases in smokers. Here, we show that lung myeloid dendritic cells were sufficient to induce T helper 1 and T helper 17 responses in CD4 T cells. T helper 1 and 17 cells are invariably present in lungs from patients with emphysema but not in lungs from normal individuals. Interleukin-17A, a canonical T helper 17 cytokine, enhanced secretion of CCL20, a chemoattractant for dendritic cells, and matrix metalloproteinase 12, a potent elastolytic proteinase, from lung macrophages. Thus, although diverse lung factors potentially contribute to T helper effector differentiation in vivo, lung myeloid dendritic cells direct the generation of pathogenic T cells and support a feedback mechanism that sustains both inflammatory cell recruitment and lung destruction. This mechanism may underlie disease in other elastin-rich organs and tissues.
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-γ ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2+ SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411–420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-γ-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.