During the COVID-19 pandemic, public health had advised practicing social distancing which led to the temporary shutdown of simulation laboratories or centralized simulation-based education model, shared spaces that healthcare workers such as paramedics use to train on important hands-on clinical skills for the job. One such skill is intraosseous (IO) access and infusion, the delivery of fluids and medication through the marrow or medullary cavity of the bone which provides fast and direct entry into the central venous system. This skill is critical in emergencies when peripheral access is not immediately available. To continue the training of paramedics in life-saving skills like IO infusion in the post-pandemic era, a decentralized simulation-based education (De-SBE) model was proposed. The De-SBE relies on the availability of inexpensive and flexible simulators that can be used by learners outside of the simulation laboratory. However, to date, there is a paucity of simulation design methods that stimulate creativity and ideation, and at the same time, provide evidence of validity for these simulators. Our exploratory research aimed to test a novel approach that combines components of development-related constraints, ideation, and consensus (CIC) approach to develop and provide content validity for simulators to be used in a De-SBE model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.