Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1-3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion.stochastic electrotransport | molecular transport | tissue clearing | tissue labeling | CLARITY
Studying the function and dysfunction of complex biological systems necessitates comprehensive understanding of individual cells. Advancements in three-dimensional (3D) tissue processing and imaging modalities have enabled rapid visualization and phenotyping of cells in their spatial context. However, system-wide interrogation of individual cells within large intact tissue remains challenging, low throughput, and error-prone owing to the lack of robust labeling technologies.Here we introduce a rapid, versatile, and scalable method, eFLASH, that enables complete and uniform labeling of organ-scale tissue within one day. eFLASH dynamically modulates chemical transport and reaction kinetics to establish system-wide uniform labeling conditions throughout the day-long labeling period. This unique approach enables the same protocol to be compatible with a wide range of tissue types and probes, enabling combinatorial molecular phenotyping across different organs and species. We applied eFLASH to generate quantitative maps of various cell types in mouse brains. We also demonstrated multidimensional cell profiling in a marmoset brain block. We envision that eFLASH will spur holistic phenotyping of emerging animal models and disease models to help assess their functions and dysfunctions.
While porous silica supports have been previously studied as carriers for nanocrystalline forms of poorly water-soluble active pharmaceutical ingredients (APIs), increasing the loading of API in these matrices is of great importance if these carriers are to be used in drug formulations. A dual-stage mixed-suspension, mixed-product removal (MSMPR) crystallizer was designed in which the poorly soluble API fenofibrate was loaded into the porous matrices of pore sizes 35 nm-300 nm in the first stage, and then fed to a second stage in which the crystals were further grown in the pores. This resulted in high loadings of over 50 wt % while still producing nanocrystals confined to the pores without the formation of bulk-sized crystals on the surface of the porous silica. The principle was extended to another highly insoluble API, griseofulvin, to improve its loading in porous silica in a benchtop procedure. This work demonstrates a multi-step crystallization principle API in porous silica matrices with loadings high enough to produce final dosage forms of these poorly water-soluble APIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.