This paper presents one of the first quantitative scenario assessments for future water supply and demand in Asia to 2050. The assessment, developed by the Water Futures and Solutions (WFaS) initiative, uses the latest set of global climate change and socioeconomic scenarios and state-of-the-art global hydrological models. In Asia, water demand for irrigation, industry, and households is projected to increase substantially in the coming decades (30-40% by 2050 compared to 2010). These changes are expected to exacerbate water stress, especially in the current hotspots such as north India and Pakistan, and north China. By 2050, 20% of the land area in the Asia-Pacific region, with a population of 1.6-2 billion, is projected to experience severe water stress. We find that socioeconomic changes are the main drivers of worsening water scarcity in Asia, with climate change impacts further increasing the challenge into the 21st century. Moreover, a detailed basin-level analysis of the hydro-economic conditions of 40 Asian basins shows that although the coping capacity of all basins is expected to improve due to gross domestic product (GDP) growth, some basins continuously face severe water challenges. These basins will potentially be home to up to 1.6 billion people by mid-21st century.Plain Language Summary Home to almost 4.5 billion people, Asia has experienced unprecedented economic and population growth in recent decades. In order to sustain growing food demand and increasing standard of living, water use has been increasing rapidly in many parts of Asia. At present, water withdrawals in Asia represent 65% of the global total. This huge abstraction of water resources has resulted in many Asian regions undergoing pervasive water scarcity conditions. The imminent global changes from climate change and socioeconomic development in Asia are expected to place additional pressures on water resources in the coming decades. In such a context, it is imperative to evaluate future water scarcity conditions and identify regions at highest risk in Asia. We found that by 2050, 20% of the land area in Asia, with population exceeding 1.6-2.0 billion, is projected to experience severe water scarcity. Here, we for the first time highlight that socioeconomic changes are the main driver of worsening water scarcity in Asia, much larger than the climate change impacts.
Environmental flows (e‐flows) are powerful tools for sustaining freshwater biodiversity and ecosystem services, but their widespread implementation faces numerous social, political, and economic barriers. These barriers are amplified in water‐limited systems where strong trade‐offs exist between human water needs and freshwater ecosystem protection. We synthesize the complex, multidisciplinary challenges that exist in these systems to help identify targeted solutions to accelerate the adoption and implementation of environmental flows initiatives. We present case studies from three water‐limited systems in North America and synthesize the major barriers to implementing environmental flows. We identify four common barriers: (a) lack of authority to implement e‐flows in water governance structures, (b) fragmented water governance in transboundary water systems, (c) declining water availability and increasing variability under climate change, and (d) lack of consideration of non‐biophysical factors. We then formulate actionable recommendations for decision makers facing these barriers when working towards implementing environmental flows: (a) modify or establish a water governance framework to recognize or allow e‐flows, (b) strive for collaboration across political jurisdictions and social, economic, and environmental sectors, and (c) manage adaptively for climate change in e‐flows planning and recommendations. This article is categorized under: Water and Life > Conservation, Management, and Awareness Human Water > Water Governance Engineering Water > Planning Water
Abstract:The study of the Rio Grande/Bravo (RGB) Basin water allocation demonstrates how the United States (U.S.) and Mexico have consolidated a transboundary framework based on water sharing. However, the water supply no longer meets the ever-increasing demand for water or the expectations of different stakeholders. This paper explores opportunities for an enhanced management regime that will address past problems and better examine how to balance demands for a precious resource and environmental needs. Based on an overview of the RGB Basin context and the water allocation framework, as well as a discussion on stakeholders' ability to achieve solutions, this paper explores three key questions: (1) Does the current binational water allocation framework meet current and future human and environmental needs? (2) How can the U.S.-Mexico water allocation framework be adapted to balance social and environmental water demands so it can support and preserve the RGB Basin ecosystem? (3) What are the main opportunities to be explored for expanding the U.S.-Mexico water resources allocation framework? The U.S.-Mexico water resources framework is subject to broad interpretation and may be adapted to the circumstances taking the fullest advantage of its flexibility. Policy recommendations highlight the existing flexibility of the binational framework, the potential to move forward with an ad hoc institutional arrangement, and the creation of political will to achieve change through stakeholders recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.