Alloying nickel with a transition metal and further stabilizing an active metal on bimodal support are regarded as a promising strategy to improve carbon resistance for dry reforming of methane (DRM) reaction. In this work, a bimodal mesoporous alumina-supported Ni-Co alloy catalyst (NiCo/MMAl) was prepared via the evaporation-induced self-assembly method and employed to catalyze DRM reaction. The promotive effect of Ni-Co alloy with a bimodal porous structure on the carbon resistance was investigated. The presence of Ni-Co alloy was confirmed on porous alumina. The NiCo/MMAl catalyst possessed two porous structures, a small-sized mesopore at 10 nm and a large-sized one at 40 nm. NiCo/ MMAl exhibited enhanced carbon resistance, in which only 2.3% carbon formed on the catalyst surface, lower than a unimodal mesoporous aluminasupported NiCo catalyst (NiCo/MAl, 12%) and Ni catalyst (Ni/MAl, 24%). The kinetic study suggested that on the unimodal mesoporous alumina, alloying Ni with Co increased the activation energy of CH 4 dissociation (∼66 kJ/mol) compared to Ni/MAl (51.7 kJ/mol), thus showing high activity for suppressing CH 4 dissociation. In addition, the large-sized mesoporous structure on NiCo/MMAl favored mass transport. As a result, the enhanced carbon resistance for NiCo/MMAl was not only attributed to the suppression of CH 4 dissociation by Ni-Co alloy but also to the promotive effect of the large-sized mesopore structure on enhancing mass transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.