Genetic toxicology studies are required for the safety assessment of chemicals. Data from these studies have historically been interpreted in a qualitative, dichotomous ''yes'' or ''no'' manner without analysis of doseresponse relationships. This article is based upon the work of an international multi-sector group that examined how quantitative dose-response relationships for in vitro and in vivo genetic toxicology data might be used to improve human risk assessment. The group examined three quantitative approaches for analyzing dose-response curves and deriving point-of-departure (POD) metrics (i.e., the no-observed-genotoxic-effectlevel (NOGEL), the threshold effect level (Td), and the benchmark dose (BMD)), using data for the induction of micronuclei and gene mutations by methyl methanesulfonate or ethyl methanesulfonate in vitro and in vivo. These results suggest that the POD descriptors obtained using the different approaches are within the same order of magnitude, with more variability observed for the in vivo assays. The different approaches were found to be complementary as each has advantages and limitations. The results further indicate that the lower confidence limit of a benchmark response rate of 10% (BMDL 10 ) could be considered a satisfactory POD when analyzing genotoxicity data using the BMD approach. The models described permit the identification of POD values that could be combined with mode of action analysis to determine whether exposure(s) below a particular level constitutes a significant human risk. Subsequent analyses will expand the number of substances and endpoints investigated, and continue to evaluate the utility of quantitative approaches for analysis of genetic toxicity dose-response data. Environ. Mol. Mutagen. 54:8-18, 2013. V V C 2012 Wiley Periodicals, Inc.
Transgenic animal models are powerful tools for developing a more detailed understanding on the roles of specific genes in biological pathways and systems. Applications of these models have been made within the field of toxicology, most notably for the screening of mutagenic and carcinogenic potential and for the characterization of toxic mechanisms of action. It has long been a goal of research toxicologists to use the data from these models to refine hazard identification and characterization to better inform human health risk assessments. This review provides an overview on the applications of transgenic animal models in the assessment of mutagenicity and carcinogenicity, their use as reporter systems, and as tools for understanding the roles of xenobiotic-metabolizing enzymes and biological receptors in the etiology of chemical toxicity. Perspectives are also shared on the future outlook for these models in toxicology and risk assessment and how transgenic technologies are likely to be an integral tool for toxicity testing in the 21st century.
Genotoxicity is generally a parameter used for hazard identification, however, the applicability of using in vivo genotoxicity tests for hazard characterization has never been thoroughly investigated in a quantitative manner. Genotoxicity assays could be useful for the determination of cancer potency parameters given that genotoxicty tests measure mutations and/or chromosomal aberrations which are strongly associated with carcinogenesis. A detailed literature survey was performed in search for dose-response data in various in vivo genotoxicity and carcinogenicity studies. The benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST. Dose-response data were available from 18 compounds in the micronucleus assay (MN), the in vivo transgenic rodent mutation assay (TG) and the comet assay, and their BMD(10) values were compared to the BMD(10) from carcinogenicity studies in mice. Of the 18 compounds, 15 had acceptable dose-response data from the MN and the TG, but only 4 from the comet assay. A major limitation in our analysis was the lack of proper dose-response studies using the recommended protocols. Nevertheless, our findings are promising because even with these suboptimal studies, a positive correlation was observed when the lowest BMD(10) from the genotoxicity tests (MN and TG) was compared to the tissue-matched carcinogenicity BMD(10) . It is evident that more compounds need to be analyzed with proper dose-response schemes to further validate our initial findings. Experimental designs of genotoxicity assays need to shift from focusing only on hazard identification where positive and negative results are reported, to a more quantitative, dose-response assessment.
We investigated the potential of four well-characterized amorphous silica nanoparticles to induce chromosomal aberrations and gene mutations using two in vitro genotoxicity assays. Transmission electron microscopy (TEM) was used to verify the manufacturer's nominal size of 10, 30, 80 and 400 nm which showed actual sizes of 11, 34, 34 and 248 nm, respectively. The 80 (34) nm silica nanoparticles induced chromosomal aberrations in the micronucleus assay using 3T3-L1 mouse fibroblasts and the 30 (34) and 80 (34) nm silica nanoparticles induced gene mutations in mouse embryonic fibroblasts carrying the lacZ reporter gene. TEM imaging demonstrated that the majority of nanoparticles were localized in vacuoles and not in the nucleus of 3T3-L1 cells, indicating that the observed DNA damage was most likely a result of indirect mechanisms. Further studies are needed to reveal these mechanisms and to determine the biological relevance of the effects of these particular silica nanoparticles in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.