Brain damage and disease involve activation of microglia and production of potentially neurotoxic molecules, but there are no treatments that effectively target their harmful properties. We present evidence that the small-conductance Ca 2ϩ /calmodulin-activated K ϩ channel KCNN4/ KCa3.1/SK4/IK1 is highly expressed in rat microglia and is a potential therapeutic target for acute brain damage. Using a Transwell cell-culture system that allows separate treatment of the microglia or neurons, we show that activated microglia killed neurons, and this was markedly reduced by treating only the microglia with a selective inhibitor of KCa3.1 channels, triarylmethane-34 (TRAM-34). To assess the role of KCa3.1 channels in microglia activation and key signaling pathways involved, we exploited several fluorescence plate-reader-based assays. KCa3.1 channels contributed to microglia activation, inducible nitric oxide synthase upregulation, production of nitric oxide and peroxynitrite, and to consequent neurotoxicity, protein tyrosine nitration, and caspase 3 activation in the target neurons. Microglia activation involved the signaling pathways p38 mitogen-activated protein kinase (MAPK) and nuclear factor B (NF-B), which are important for upregulation of numerous proinflammatory molecules, and the KCa3.1 channels were functionally linked to activation of p38 MAPK but not NF-B. These in vitro findings translated into in vivo neuroprotection, because we found that degeneration of retinal ganglion cells after optic nerve transection was reduced by intraocular injection of TRAM-34. This study provides evidence that KCa3.1 channels constitute a therapeutic target in the CNS and that inhibiting this K ϩ channel might benefit acute and chronic neurodegenerative disorders that are caused by or exacerbated by inflammation.
After an ischemic stroke, neurons in the core are rapidly committed to die, whereas neuron death in the slowly developing penumbra is more amenable to therapeutic intervention. Microglia activation contributes to delayed inflammation, but because neurotoxic mechanisms in the penumbra are not well understood, we developed an in vitro model of microglia activation and propagated neuron killing. To recapitulate inflammatory triggers in the core, microglia were exposed to oxygen glucose-deprived neurons and astrocytes. To model the developing penumbra, the microglia were washed and allowed to interact with healthy naive neurons and astrocytes. We found that oxygen-glucose deprivation (OGD)-stressed neurons released glutamate, which activated microglia through their group II metabotropic glutamate receptors (mGluRs). Microglia activation involved nuclear factor B (NF-B), a transcription factor that promotes their proinflammatory functions. The activated microglia became neurotoxic, killing naive neurons through an apoptotic mechanism that was mediated by tumor necrosis factor-␣ (TNF-␣), and involved activation of both caspase-8 and caspase-3. In contrast to some earlier models (e.g., microglia activation by lipopolysaccharide), neurotoxicity was not decreased by an inducible nitric oxide synthase (iNOS) inhibitor (S-methylisothiourea) or a peroxynitrite scavenger [5,10,15,20-tetrakis(N-methyl-4Ј-pyridyl)porphinato iron (III) chloride], and did not require p38 mitogen-activated protein kinase (MAPK) activation. The same microglia neurotoxic behavior was evoked without exposure to OGD-stressed neurons, by directly activating microglial group II mGluRs with (2S,2ЈR,3ЈR)-2-(2Ј3Ј-dicarboxycyclopropyl) glycine or glutamate, which stimulated production of TNF-␣ (not nitric oxide) and mediated TNF-␣-dependent neurotoxicity through activation of NF-B (not p38 MAPK). Together, these results support potential therapeutic strategies that target microglial group II mGluRs, TNF␣ overproduction, and NF-B activation to reduce neuron death in the ischemic penumbra.
Microglia respond to CNS injuries and diseases with complex reactions, often called “activation.” A pro-inflammatory phenotype (also called classical or M1 activation) lies at one extreme of the reactivity spectrum. There were several motivations for this study. First, bacterial endotoxin (lipopolysaccharide, LPS) is the most commonly used pro-inflammatory stimulus for microglia, both in vitro and in vivo; however, pro-inflammatory cytokines (e.g., IFNγ, TNFα) rather than LPS will be encountered with sterile CNS damage and disease. We lack direct comparisons of responses between LPS and such cytokines. Second, while transcriptional profiling is providing substantial data on microglial responses to LPS, these studies mainly use mouse cells and models, and there is increasing evidence that responses of rat microglia can differ. Third, the cytokine milieu is dynamic after acute CNS damage, and an important question in microglial biology is: How malleable are their responses? There are very few studies of effects of resolving cytokines, particularly for rat microglia, and much of the work has focused on pro-inflammatory outcomes. Here, we first exposed primary rat microglia to LPS or to IFNγ+TNFα (I+T) and compared hallmark functional (nitric oxide production, migration) and molecular responses (almost 100 genes), including surface receptors that can be considered part of the sensome. Protein changes for exemplary molecules were also quantified: ARG1, CD206/MRC1, COX-2, iNOS, and PYK2. Despite some similarities, there were notable differences in responses to LPS and I+T. For instance, LPS often evoked higher pro-inflammatory gene expression and also increased several anti-inflammatory genes. Second, we compared the ability of two anti-inflammatory, resolving cytokines (IL-4, IL-10), to counteract responses to LPS and I+T. IL-4 was more effective after I+T than after LPS, and IL-10 was surprisingly ineffective after either stimulus. These results should prove useful in modeling microglial reactivity in vitro; and comparing transcriptional responses to sterile CNS inflammation in vivo.
The proliferation of microglia is a normal process in CNS development and in the defense against pathological insults, although, paradoxically, it contributes to several brain diseases. We have examined the types of voltage-activated K ϩ currents (Kv) and their roles in microglial proliferation. Microglia were tissue-printed directly from the hippocampal region using brain slices from 5-to 14-d-old rats. Immediately after tissue prints were prepared, unipolar and bipolar microglia expressed a large Kv current, and the cells were not proliferating. Surprisingly, this current was biophysically and pharmacologically distinct from Kv1.3, which has been found in dissociated, cultured microglia, but it was very similar to Kv1.5. After several days in culture the microglia became highly proliferative, and although the Kv prevalence and current density decreased, many cells exhibited a prominent Kv that was indistinguishable from Kv1.3. The Kv1.5-like current was present in nonproliferating cells, whereas proliferating cells expressed the Kv1.3-like current. Immunocytochemical staining showed a dramatic shift in expression and localization of Kv1.3 and Kv1.5 proteins in microglia: Kv1.5 moving away from the surface and Kv1.3 moving to the surface as the cells were cultured. K ϩ channel blockers inhibited proliferation, and the pharmacology of this inhibition correlated with the type of Kv current expressed. Our study, which introduces a method for the physiological examination of microglia from identified brain regions, demonstrates the differential expression of two functional Kv subunits and shows that a functional delayed rectifier current is necessary for microglia proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.