We combine in situ measurements of sea salt aerosols (SS) from open ocean cruises and ground-based stations together with aerosol optical depth (AOD) observations from MODIS and AERONET, and the GEOS-Chem global chemical transport model to provide new constraints on SS emissions over the world's oceans. We find that the GEOS-Chem model using the Gong (2003) source function overestimates cruise observations of coarse mode SS mass concentrations by factors of 2–3 at high wind speeds over the cold waters of the Southern, North Pacific and North Atlantic Oceans. Furthermore, the model systematically underestimates SS over the warm tropical waters of the Central Pacific, Atlantic, and Indian Oceans. This pattern is confirmed by SS measurements from a global network of 15 island and coastal stations. The model discrepancy at high wind speeds (>6 m s<sup> −1</sup>) has a clear dependence on sea surface temperature (SST). We use the cruise observations to derive an empirical SS source function depending on both wind speed and SST. Implementing this new source function in GEOS-Chem results in improved agreement with in situ observations, with a decrease in the model bias from +64% to +33% for the cruises and from +32% to −5% for the ground-based sites. We also show that the wind speed-SST source function significantly improves agreement with MODIS and AERONET AOD, and provides an explanation for the high AOD observed over the tropical oceans. With the wind speed-SST formulation, global SS emissions show a small decrease from 5200 Mg yr<sup>−1</sup> to 4600 Mg yr<sup>−1</sup>, while the SS burden decreases from 9.1 to 8.5 mg m<sup>−2</sup>. The spatial distribution of SS, however, is greatly affected, with the SS burden increasing by 50% in the tropics and decreasing by 40% at mid- and high-latitudes. Our results imply a stronger than expected halogen source from SS in the tropical marine boundary layer. They also imply stronger radiative forcing of SS in the tropics and a larger response of SS emissions to climate change than previously thought
[1] We use a global 3-D model of atmospheric mercury (GEOS-Chem) to interpret worldwide observations of total gaseous mercury (TGM) and reactive gaseous mercury (RGM) in terms of the constraints they provide on the chemical cycling and deposition of mercury. Our simulation including a global mercury source of 7000 Mg yr À1 and a TGM lifetime of 0.8 years reproduces the magnitude and large-scale variability of TGM observations at land sites. However, it cannot capture observations of high TGM from ship cruises, implying a problem either in the measurements or in our fundamental understanding of mercury sources. Observed TGM seasonal variation at northern midlatitudes is consistent with a photochemical oxidation for Hg(0) partly balanced by photochemical reduction of Hg(II). Observations of increasing RGM with altitude imply a long lifetime of Hg(II) in the free troposphere. We find in the model that Hg(II) dominates over Hg(0) in the upper troposphere and stratosphere and that subsidence is the principal source of Hg(II) at remote surface sites. RGM observations at Okinawa Island (Japan) show large diurnal variability implying fast deposition, which we propose is due to RGM uptake by sea-salt aerosols. Observed mercury wet deposition fluxes in the United States show a maximum in the southeast, which we attribute to photochemical oxidation of the global Hg(0) pool. They also show a secondary maximum in the industrial Midwest due to regional emissions that is underestimated in the model, possibly because of excessive dry deposition relative to wet (dry deposition accounts for 68% of total mercury deposition in the United States in the model, but this is sensitive to the assumed phase of Hg(II)). We estimate that North American anthropogenic emissions contribute on average 20% to U.S. mercury deposition.
We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to derive monthly top-down NOx emissions for 2000 via inverse modeling with the GEOS-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel and biofuel), biomass burning and soils by exploiting the spatio-temporal distribution of remotely sensed fires and a priori information on the location of regions dominated by fuel combustion. The top-down inventory is combined with an a priori inventory to obtain an optimized a posteriori estimate of the relative roles of NOx sources. The resulting a posteriori fuel combustion inventory (25.6 TgN year(-1)) agrees closely with the a priori (25.4 TgN year(-1)), and errors are reduced by a factor of 2, from +/- 80% to +/- 40%. Regionally, the largest differences are found over Japan and South Africa, where a posteriori estimates are 25% larger than a priori. A posteriori fuel combustion emissions are aseasonal, with the exception of East Asia and Europe where winter emissions are 30-40% larger relative to summer emissions, consistent with increased energy use during winter for heating. Global a posteriori biomass burning emissions in 2000 resulted in 5.8 TgN (compared to 5.9 TgN year(-1) in the a priori), with Africa accounting for half of this total. A posteriori biomass burning emissions over Southeast Asia/India are decreased by 46% relative to a priori; but over North equatorial Africa they are increased by 50%. A posteriori estimates of soil emissions (8.9 TgN year(-1)) are 68% larger than a priori (5.3 TgN year(-1)). The a posteriori inventory displays the largest soil emissions over tropical savanna/woodland ecosystems (Africa), as well as over agricultural regions in the western U.S. (Great Plains), southern Europe (Spain, Greece, Turkey), and Asia (North China Plain and North India), consistent with field measurements. Emissions over these regions are highest during summer at mid-latitudes and during the rainy season in the Tropics. We estimate that 2.5-4.5 TgN year(-1) are emitted from N-fertilized soils, at the upper end of previous estimates. Soil and biomass burning emissions account for 22% and 14% of global surface NOx emissions, respectively. We infer a significant role for soil NOx emissions at northern mid-latitudes during summer, where they account for nearly half that of the fuel combustion source, a doubling relative to the a priori. The contribution of soil emissions to background ozone is thus likely to be underestimated by the current generation of chemical transport models.
[1] We develop a mechanistic representation of land-atmosphere cycling in a global 3-D ocean-atmosphere model of mercury (GEOS-Chem). The resulting land-oceanatmosphere model is used to construct preindustrial and present biogeochemical cycles of mercury, to examine the legacy of past anthropogenic emissions, to map anthropogenic enrichment factors for deposition, and to attribute mercury deposition in the United States. Land emission in the model includes prompt recycling of recently deposited mercury (600 Mg a À1 for present day), soil volatilization (550 Mg a À1), and evapotranspiration (550 Mg a À1). The spatial distribution of soil concentrations is derived from local steady state between land emission and deposition in the preindustrial simulation, augmented for the present day by a 15% increase in the soil reservoir distributed following the pattern of anthropogenic deposition. Mercury deposition and hence emission are predicted to be highest in the subtropics. Our atmospheric lifetime of mercury against deposition (0.50 year) is shorter than past estimates because of our accounting of Hg(0) dry deposition, but recycling from surface reservoirs results in an effective lifetime of 1.6 years against transfer to long-lived reservoirs in the soil and deep ocean. Present-day anthropogenic enrichment of mercury deposition exceeds a factor of 5 in continental source regions. We estimate that 68% of the deposition over the United States is anthropogenic, including 20% from North American emissions (20% primary and <1% recycled through surface reservoirs), 31% from emissions outside North America (22% primary and 9% recycled), and 16% from the legacy of anthropogenic mercury accumulated in soils and the deep ocean.
[1] Continuous CO measurements were obtained at Cheeka Peak Observatory (CPO, 48.3°N, 124.6°W, 480 m), a coastal site in Washington state, between 9 March 2001 and 31 May 2002. We analyze these observations as well as CO observations at ground sites throughout the North Pacific using the GEOS-CHEM global tropospheric chemistry model to examine the seasonal variations of Asian long-range transport. The model reproduces the observed CO levels, their seasonal cycle and day-to-day variability, with a 5-20 ppbv negative bias in winter/spring and 5-10 ppbv positive bias during summer. Asian influence on CO levels in the North Pacific troposphere maximizes during spring and minimizes during summer, ranging from 91 ppbv (44% of total CO) to 52 ppbv (39%) along the Asian Pacific Rim and from 44 ppbv (30%) to 24 ppbv (23%) at CPO. Maximum export of Asian pollution to the western Pacific occurs at 20°-50°N during spring throughout the tropospheric column, shifting to 30°-60°N during summer, mostly in the upper troposphere. The model captures five particularly strong transpacific transport events reaching CPO (four in spring, one in winter) resulting in 20-40 ppbv increases in observed CO levels. Episodic long-range transport of pollutants from Asia to the NE Pacific occurs throughout the year every 10, 15, and 30 days in the upper, middle, and lower troposphere, respectively. Lifting ahead of cold fronts followed by transport in midlatitude westerlies accounts for 78% of long-range transport events reaching the NE Pacific middle and upper troposphere. During summer, convective injection into the upper troposphere competes with frontal mechanisms in this export. Most events reaching the NE Pacific lower troposphere below 2 km altitude result from boundary layer outflow behind cold fronts (for spring) or ahead of cold fronts (for other seasons) followed by low-level transpacific transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.