[1] The transition between the small melt lens observed on top of fast spreading ridge magma chambers and the overlying sheeted dike complex marks the interface between magma and the hydrothermal convective system. It is therefore critical to our understanding of fast spreading ridge accretion processes. We present maps of two areas of the Oman ophiolite where this transition zone is observed as continuous outcrops. Our observations, which include the base of the sheeted dike being crosscut by gabbros, are consistent with episodic dike injections in a steady state model but also suggest that the root of these dikes is commonly erased by vertical movements of the top of the melt lens. Dike assimilation is a possible mechanism for incorporating hydrated phases, which result from hydrothermal alteration, to the melt lens during upward migrations of its upper boundary. Upward migrations are also responsible for a granoblastic overprint of the root of the dikes that is also observed in the stoped diabase xenoliths. This granoblastic overprint attests to reheating of previously hydrothermally altered lithologies which can even trigger hydrous partial melting due to the lowering of the solidus of mafic lithologies by the presence of a water activity. Clinopyroxenes present in these granoblastic lithologies are typically low in Ti and Al content, thus strongly contrasting with corresponding magmatic clinopyroxene. This may attest to the recrystallization of clinopyroxenes after amphiboles under the peculiar conditions present at the root zone of the sheeted dike complex. Downward migrations of the top of the melt lens result in the crystallization of the isotropic gabbros at its roof, which represent the partly fossilized melt lens. Melt lens fossilization eventually occurs when magma supply is stopped or at the melt lens margins where the thermal conditions become cooler. Melt lens migration, recrystallization of hydrothermally altered sheeted dikes during reheating stages, and assimilation processes observed in the Oman ophiolite are consistent with the observations made in IODP Hole 1256D. We propose a general dynamic model in which the melt lens at fast spreading ridges undergoes upward and downward movements as a result of either eruption/replenishment stages or variations in the hydrothermal/magmatic fluxes.
International audienceIn ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850A degrees C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.