Swarming is a mode of translocation dependent on flagellar activity that allows bacteria to move rapidly across surfaces. In several bacteria, swarming is a phenotype regulated by quorum sensing. It has been reported that the swarming ability of the soil bacterium Sinorhizobium meliloti Rm2011 requires a functional ExpR/Sin quorum-sensing system. However, our previous published results demonstrate that strains Rm1021 and Rm2011, both known to have a disrupted copy of expR, are able to swarm on semisolid minimal medium. In order to clarify these contradictory results, the role played by the LuxR-type regulator ExpR has been reexamined. Results obtained in this work revealed that S. meliloti can move over semisolid surfaces using at least two different types of motility. One type is flagellum-independent surface spreading or sliding, which is positively influenced by a functional expR gene mainly through the production of exopolysaccharide II (EPS II). To a lesser extent, EPS II-deficient strains can also slide on surfaces by a mechanism that is at least dependent on the siderophore rhizobactin 1021. The second type of surface translocation shown by S. meliloti is swarming, which is greatly dependent on flagella and rhizobactin 1021 but does not require ExpR. We have extended our study to demonstrate that the production of normal amounts of succinoglycan (EPS I) does not play a relevant role in surface translocation but that its overproduction facilitates both swarming and sliding motilities.
Sinorhizobium meliloti can exhibit diverse modes of surface translocation whose manifestation depends on the strain. The mechanisms involved and the role played by the different modes of surface motility in the establishment of symbiosis are largely unknown. In this work, we have characterized the surface motility shown by two S. meliloti reference strains (Rm1021 and GR4) under more permissive conditions for surface spreading and analyzed the symbiotic properties of two flagella-less S. meliloti mutants with different behavior on surfaces. The use of Noble agar in semisolid minimal medium induces surface motility in GR4, a strain described so far as non-motile on surfaces. The motility exhibited by GR4 is swarming as revealed by the non-motile phenotype of the flagella-less flaAB mutant. Intriguingly, a flgK mutation which also abolishes flagella production, triggers surface translocation in GR4 through an as yet unknown mechanism. In contrast to GR4, Rm1021 moves over surfaces using mostly a flagellaindependent motility which is highly reliant on siderophore rhizobactin 1021 production. Surprisingly, this motility is absent in a flagella-less flgE mutant. In addition, we found that fadD loss-of-function, known to promote surface motility in S. meliloti, exerts different effects on the two reference strains: while fadD inactivation promotes a flagella-independent type of motility in GR4, the same mutation interferes with the surface translocation exhibited by the Rm1021 flaAB mutant. The symbiotic phenotypes shown by GR4flaAB and GR4flgK, non-flagellated mutants with opposite surface motility behavior, demonstrate that flagella-dependent motility positively influences competitiveness for nodule occupation, but is not crucial for optimal infectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.