BACKGROUND Endovascular therapy is increasingly used after the administration of intravenous tissue plasminogen activator (t-PA) for patients with moderate-to-severe acute ischemic stroke, but whether a combined approach is more effective than intravenous t-PA alone is uncertain. METHODS We randomly assigned eligible patients who had received intravenous t-PA within 3 hours after symptom onset to receive additional endovascular therapy or intravenous t-PA alone, in a 2:1 ratio. The primary outcome measure was a modified Rankin scale score of 2 or less (indicating functional independence) at 90 days (scores range from 0 to 6, with higher scores indicating greater disability). RESULTS The study was stopped early because of futility after 656 participants had undergone randomization (434 patients to endovascular therapy and 222 to intravenous t-PA alone). The proportion of participants with a modified Rankin score of 2 or less at 90 days did not differ significantly according to treatment (40.8% with endovascular therapy and 38.7% with intravenous t-PA; absolute adjusted difference, 1.5 percentage points; 95% confidence interval [CI], −6.1 to 9.1, with adjustment for the National Institutes of Health Stroke Scale [NIHSS] score [8–19, indicating moderately severe stroke, or ≥20, indicating severe stroke]), nor were there significant differences for the predefined subgroups of patients with an NIHSS score of 20 or higher (6.8 percentage points; 95% CI, −4.4 to 18.1) and those with a score of 19 or lower (−1.0 percentage point; 95% CI, −10.8 to 8.8). Findings in the endovascular-therapy and intravenous t-PA groups were similar for mortality at 90 days (19.1% and 21.6%, respectively; P = 0.52) and the proportion of patients with symptomatic intracerebral hemorrhage within 30 hours after initiation of t-PA (6.2% and 5.9%, respectively; P = 0.83). CONCLUSIONS The trial showed similar safety outcomes and no significant difference in functional independence with endovascular therapy after intravenous t-PA, as compared with intravenous t-PA alone. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT00359424.)
Background and Purpose: Endovascular strategies provide unique opportunity to correlate angiographic measures of collateral circulation at the time of endovascular therapy. We conducted systematic analyses of collaterals at conventional angiography on recanalization, reperfusion and the clinical outcomes in the endovascular treatment arm of the Interventional Management of Stroke (IMS) III Trial. Methods: Prospective evaluation of angiographic collaterals was conducted via central review of subjects treated with endovascular therapy in IMS III (n=331). Collateral grade prior to endovascular therapy was assessed with the ASITN/SIR scale, blinded to all other data. Statistical analyses investigated the association between collaterals with baseline clinical variables, angiographic measures of recanalization, reperfusion and clinical outcomes. Results: Adequate views of collateral circulation to the ischemic territory were available in 276/331 (83%) subjects. Collateral grade was strongly related to both recanalization of the occluded arterial segment (p=0.0016) and downstream reperfusion (p<0.0001). Multivariable analyses confirmed that robust angiographic collateral grade was a significant predictor of good clinical outcome (mRS≤2) at 90 days (p=0.0353), adjusted for age, history of diabetes, NIHSS strata, and ASPECTS. The relationship between collateral flow and clinical outcome may depend on the degree of reperfusion. Conclusions: More robust collateral grade was associated with better recanalization, reperfusion, and subsequent better clinical outcomes. These data, from the largest endovascular trial to date, suggest that collaterals are an important consideration in future trial design.
BACKGROUND The IMS III Trial did not demonstrate clinical benefit of the endovascular approach compared to IV rt-PA alone for moderate or severe ischemic strokes (NIHSS≥8) enrolled within three hours of stroke onset. Late reperfusion of tissue that is no longer salvageable may be one explanation, as suggested by prior exploratory studies showing an association between time to reperfusion and good clinical outcome. We sought to validate this relationship in the large-scale IMS III trial, and consider its implications for future endovascular trials. METHODS The analysis consisted of the endovascular cohort with proximal arterial occlusions in the anterior circulation that achieved angiographic reperfusion (TICI 2–3) during the endovascular procedure (within 7 hours from the onset of symptoms). Logistic regression was used to model good clinical outcome (90-day modified Rankin 0–2) as a function of the time to reperfusion, and prespecified variables were considered for adjustment. FINDINGS Among 240 proximal vessel occlusions, angiographic reperfusion (TICI 2–3) was achieved in 182 (76%). Mean time to reperfusion was 325 minutes (range 180–418 minutes). Longer time for reperfusion was associated with a decreased likelihood of good clinical outcome (RR [95% CI] for every 30 minute delay: unadjusted 0·85 [0·77–0·94]; adjusted 0·88 [0·80–0·98]). INTERPRETATION We confirm that delay in time to angiographic reperfusion leads to a decreased likelihood of good clinical outcome. Achieving rapid reperfusion may be critical for the successes of future acute endovascular trials. FUNDING: NIH/NINDS (study sponsor), Genentech Inc. (study drug - intra-arterial t-PA), EKOS Corp. (device), Concentric Inc. (device), Cordis Neurovascular, Inc. (device), and Boehringer Ingelheim (European Investigator Meeting support).
Background Early administration of convalescent plasma obtained from blood donors who have recovered from coronavirus disease 2019 (Covid-19) may prevent disease progression in acutely ill, high-risk patients with Covid-19. Methods In this randomized, multicenter, single-blind trial, we assigned patients who were being treated in an emergency department for Covid-19 symptoms to receive either one unit of convalescent plasma with a high titer of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or placebo. All the patients were either 50 years of age or older or had one or more risk factors for disease progression. In addition, all the patients presented to the emergency department within 7 days after symptom onset and were in stable condition for outpatient management. The primary outcome was disease progression within 15 days after randomization, which was a composite of hospital admission for any reason, seeking emergency or urgent care, or death without hospitalization. Secondary outcomes included the worst severity of illness on an 8-category ordinal scale, hospital-free days within 30 days after randomization, and death from any cause. Results A total of 511 patients were enrolled in the trial (257 in the convalescent-plasma group and 254 in the placebo group). The median age of the patients was 54 years; the median symptom duration was 4 days. In the donor plasma samples, the median titer of SARS-CoV-2 neutralizing antibodies was 1:641. Disease progression occurred in 77 patients (30.0%) in the convalescent-plasma group and in 81 patients (31.9%) in the placebo group (risk difference, 1.9 percentage points; 95% credible interval, −6.0 to 9.8; posterior probability of superiority of convalescent plasma, 0.68). Five patients in the plasma group and 1 patient in the placebo group died. Outcomes regarding worst illness severity and hospital-free days were similar in the two groups. Conclusions The administration of Covid-19 convalescent plasma to high-risk outpatients within 1 week after the onset of symptoms of Covid-19 did not prevent disease progression. (SIREN-C3PO ClinicalTrials.gov number, NCT04355767 .)
ContributionsMagdy Selim --organized the trial hypotheses, designed the trial, provided guidance about the data analysis and interpretation and presentation of the data, and drafted most of the sections of the manuscript. Lydia Foster --involved in the statistical analysis and data interpretation, and Contributed to the development and revisions to the manuscript. Claudia Moy --involved in the oversight of the trial conduct and progress Guohua Xi --organized the trial hypotheses, and provided critical revisions to the manuscript. MH, MJ, VS, and WC contributed to recruitment and randomization of trial participants, and provided critical revisions to the manuscript. LM and SG were involved in the design of the trial and provided critical revisions to the manuscript. Casey Norton --provided volumetric measurements of imaging data. Yuko Palesch --involved in the design of the study, statistical analysis and data interpretation, and provided critical revisions to the manuscript. Sharon yeatts --involved in the design of the study, statistical analysis and data interpretation, and contributed to the development and revisions to the manuscript. The idef investigators (see appendix) --contributed to the identification and, when eligible, randomization of trial participants. DECLARATION OF INTERESTSThis was an investigator-initiated study, funded by the NINDS (U01 NS074425). Deferoxamine Mesylate is a generic drug, and there was no commercial or industrial support for the trial. None of the authors has any competing interests related to the submitted work. MS reports grants from the NIH/NINDS (i-DEF) and the American Heart Association (outside the submitted work), and personal fees for serving on the advisory board of CSL Behring (outside the submitted work) during the conduct of the trial. SDY reports grant support from the NINDS, personal fees from Genentech and other fees from CR Bard Inc. (outside the submitted work) during the conduct of the study. SG, LDF, YP, and GX report grants from the NIH/NINDS. MDH reports personal fees from Merck, nonfinancial support from Hoffmann-La Roche Canada Ltd, grants from Covidien (Medtronic), grants from Boehringer-Ingleheim, grants from Stryker Inc., grants from Medtronic LLC, grants from NoNO Inc., (outside the submitted work); In addition, MDH has a patent Systems and Methods for Assisting in Decision-Making and Triaging for Acute Stroke Patients pending to US Patent office Number: 62/086,077 and owns stock in Calgary Scientific Incorporated, a company that focuses on medical imaging software, is a director of the Canadian Federation of Neurological Sciences, a not-for-profit group and has received grant support from Alberta Innovates Health Solutions, CIHR, Heart & Stroke Foundation of Canada, and NINDS. LM, VS, WC, MJ, CM, and CN have nothing to disclose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.