Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation 1 . Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or Reprints and permissions information is available at http://www.nature.com/reprints.
Summary
The placenta provides the interface for gas and nutrient exchange between the mother and the fetus. Despite its critical function in sustaining pregnancy, the stem/progenitor cell hierarchy and molecular mechanisms responsible for the development of the placental exchange interface are poorly understood. We identified an Epcamhi labyrinth trophoblast progenitor (LaTP) in mouse placenta that at a clonal level generates all labyrinth trophoblast subtypes, syncytiotrophoblasts I and II and sinusoidal trophoblast giant cells. Moreover, we discovered that Hgf/c-Met signaling is required for sustaining proliferation of LaTP during midgestation. Loss of trophoblast c-Met also disrupted terminal differentiation and polarization of syncytiotrophoblasts, leading to intrauterine fetal growth restriction, fetal liver hypocellularity and demise. Identification of a this c-Met dependent multipotent labyrinth trophoblast progenitor provides a landmark in the poorly defined placental stem/progenitor cell hierarchy and may help understand pregnancy complications caused by a defective placental exchange.
The contribution of the different waves and sites of developmental hematopoiesis to fetal and adult blood production remains unclear. Here, we identify lymphatic vessel endothelial hyaluronan receptor-1 (LYVE1) as a marker of yolk sac (YS) endothelium and definitive hematopoietic stem and progenitor cells (HSPCs). Endothelium in mid-gestation YS and vitelline vessels, but not the dorsal aorta and placenta, were labeled by Lyve1-Cre. Most YS HSPCs and erythro-myeloid progenitors were Lyve1-Cre lineage traced, but primitive erythroid cells were not, suggesting that they represent distinct lineages. Fetal liver (FL) and adult HSPCs showed 35%-40% Lyve1-Cre marking. Analysis of circulation-deficient Ncx1 concepti identified the YS as a major source of Lyve1-Cre labeled HSPCs. FL proerythroblast marking was extensive at embryonic day (E) 11.5-13.5, but decreased to hematopoietic stem cell (HSC) levels by E16.5, suggesting that HSCs from multiple sources became responsible for erythropoiesis. Lyve1-Cre thus marks the divergence between YS primitive and definitive hematopoiesis and provides a tool for targeting YS definitive hematopoiesis and FL colonization.
Objective To investigate the validity of a prediction model for success of vaginal birth after cesarean delivery (VBAC) in an ethnically diverse population.
Methods We performed a retrospective cohort study of women admitted at a single academic institution for a trial of labor after cesarean from May 2007 to January 2015. Individual predicted success rates were calculated using the Maternal–Fetal Medicine Units Network prediction model. Participants were stratified into three probability-of-success groups: low (<35%), moderate (35–65%), and high (>65%). The actual versus predicted success rates were compared.
Results In total, 568 women met inclusion criteria. Successful VBAC occurred in 402 (71%), compared with a predicted success rate of 66% (p = 0.016). Actual VBAC success rates were higher than predicted by the model in the low (57 vs. 29%; p < 0.001) and moderate (61 vs. 52%; p = 0.003) groups. In the high probability group, the observed and predicted VBAC rates were the same (79%).
Conclusion When the predicted success rate was above 65%, the model was highly accurate. In contrast, for women with predicted success rates <35%, actual VBAC rates were nearly twofold higher in our population, suggesting that they should not be discouraged by a low prediction score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.