The role of the tight‐junction (TJ) protein occludin (OCLN) in hepatitis C virus (HCV) entry remains elusive. Here, we investigated the OCLN C‐terminal cytosolic domain in HCV infection. We expressed a series of C‐terminal deletion mutants in Huh‐7 cells KO for OCLN and characterized their functionality in HCV infection and trafficking. Deleting the OCLN cytosolic domain led to protein instability and intracellular retention. The first 15 residues (OCLN‐C15 mutant) of the cytosolic domain were sufficient for OCLN stability, but led to its accumulation in the trans‐Golgi network (TGN) due to a deficient cell surface export after synthesis. In contrast, the OCLN‐C18 mutant, containing the first 18 residues of the cytosolic domain, was expressed at the cell surface and could mediate HCV infection. Point mutations in the context of C18 showed that I279 and W281 are crucial residues for cell surface expression of OCLN‐C18. However, in the context of full‐length OCLN, mutation of these residues only partially affected infection and cell surface localization. Importantly, the characterization of OCLN‐C18 in human‐polarized hepatocytes revealed a defect in its TJ localization without affecting HCV infection. These data suggest that TJ localization of OCLN is not a prerequisite for HCV infection in polarized hepatocytes.
In the hepatitis C virus (HCV) envelope glycoproteins E1 and E2, which form a heterodimer, E2 is the receptor binding protein and the major target of neutralizing antibodies, whereas the function of E1 remains less characterized. To investigate E1 functions, we generated a series of mutants in the conserved residues of the C-terminal region of the E1 ectodomain in the context of an infectious clone. We focused our analyses on two regions of interest. The first region is located in the middle of the E1 glycoprotein (between amino acid [aa] 270 and aa 291), which contains a conserved hydrophobic sequence and was proposed to constitute a putative fusion peptide. The second series of mutants was generated in the region from aa 314 to aa 342 (the aa314-342 region), which has been shown to contain two α helices (α2 and α3) by nuclear magnetic resonance studies. Of the 22 generated mutants, 20 were either attenuated or noninfectious. Several mutations modulated the virus's dependence on claudin-1 and the scavenger receptor BI coreceptors for entry. Most of the mutations in the putative fusion peptide region affected virus assembly. Conversely, mutations in the α-helix aa 315 to 324 (315-324) residues M318, W320, D321, and M322 resulted in a complete loss of infectivity without any impact on E1E2 folding and on viral assembly. Further characterization of the W320A mutant in the HCVpp model indicated that the loss of infectivity was due to a defect in viral entry. Together, these results support a role for E1 in modulating HCV interaction with its coreceptors and in HCV assembly. They also highlight the involvement of α-helix 315-324 in a late step of HCV entry. HCV is a major public health problem worldwide. The virion harbors two envelope proteins, E1 and E2, which are involved at different steps of the viral life cycle. Whereas E2 has been extensively characterized, the function of E1 remains poorly defined. We characterized here the function of the putative fusion peptide and the region containing α helices of the E1 ectodomain, which had been previously suggested to be important for virus entry. We could confirm the importance of these regions for the virus infectivity. Interestingly, we found several residues modulating the virus's dependence on several HCV receptors, thus highlighting the role of E1 in the interaction of the virus with cellular receptors. Whereas mutations in the putative fusion peptide affected HCV infectivity and morphogenesis, several mutations in the α2-helix region led to a loss of infectivity with no effect on assembly, indicating a role of this region in virus entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.