Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1][2][3][4][5][6][7][8][9][10][11][12][13] C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 6 0.7 vs. 8.4 6 0.5 mmol/L), lower PDH flux (0.005 6 0.001 vs. 0.017 6 0.002 s -1 ), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E9] 12.2 6 0.8 vs. 20 6 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 6 0.002 s -1 ), reversed diastolic dysfunction (E/E9 14 6 1), and normalized blood glucose levels (7.5 6 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy.It is now firmly established that type 2 diabetes contributes to an increased risk for the development of heart failure (1). Although some of this risk can be attributed to increased coronary artery disease and hypertension, it is becoming clear that patients with type 2 diabetes are also at risk for the development of "diabetic cardiomyopathy" (2-5), which manifests across a spectrum from subclinical left ventricular (LV) diastolic dysfunction (i.e., transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E9]) to overt systolic failure (6). As the incidence of type 2 diabetes is rapidly increasing, understanding the pathophysiology behind diabetic cardiomyopathy and developing new treatment strategies is of increasing clinical importance.Cardiac metabolism and altered substrate use are now emerging as candidate mechanisms underpinning diabetic cardiomyopathy and, as such, are targets for novel treatments (7,8). The cardiac metabolic changes in type 2 diabetes are linked to an increase in circulating fatty acid levels that results from insulin insensitivity and a failure to suppress adipose tissue hormone-sensitive lipase (9). This increase in fatty acid availability, and consequently increased cardiac usage, is thought to result in a loss of efficiency between substrate use and ATP production in the diabetic heart (10). Chan...
PurposeButyrate, a short chain fatty acid, was studied as a novel hyperpolarized substrate for use in dynamic nuclear polarization enhanced magnetic resonance spectroscopy experiments, to define the pathways of short chain fatty acid and ketone body metabolism in real time.MethodsButyrate was polarized via the dynamic nuclear polarization process and subsequently dissolved to generate an injectable metabolic substrate. Metabolism was initially assessed in the isolated perfused rat heart, followed by evaluation in the in vivo rat heart.ResultsHyperpolarized butyrate was generated with a polarization level of 7% and was shown to have a T1 relaxation time of 20 s. These physical characteristics were sufficient to enable assessment of multiple steps in its metabolism, with the ketone body acetoacetate and several tricarboxylic acid cycle intermediates observed both in vitro and in vivo. Metabolite to butyrate ratios of 0.1–0.4% and 0.5–2% were observed in vitro and in vivo respectively, similar to levels previously observed with hyperpolarized [2-13C]pyruvate.ConclusionsIn this study, butyrate has been demonstrated to be a suitable hyperpolarized substrate capable of revealing multi-step metabolism in dynamic nuclear polarization experiments and providing information on the metabolism of fatty acids not currently achievable with other hyperpolarized substrates. Magn Reson Med 71:1663–1669, 2014. © 2013 Wiley Periodicals, Inc.
Functional and structural alterations in the SHR heart are consistent with the hypertrophied phenotype. Our in vivo work indicates a preference for glucose metabolism in the SHR heart, a move away from predominantly fatty acid oxidative metabolism. Interestingly, (13)C label flux into lactate was unchanged, indicating no switch to an anaerobic glycolytic phenotype, but rather an increased reliance on glucose oxidation in the SHR heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.