Previous results have shown that glial cells provide a soft environment for the neurons of the mammalian central nervous system (CNS). This raises the question whether neurons are confined to the CNS and cannot wander off into more rigid tissues, such as brain capillary walls. We investigated the mechanical properties and force generation of extending mouse retinal ganglion cells and NG108-15 growth cones (GCs) using different atomic force microscope (AFM)-based methods. For the first time, to our knowledge, we were able to measure the forward pushing forces at the leading edge of outgrowing neuronal GCs with our drift-stabilized AFM. Our results demonstrate that these GCs have neither the required stability nor the ability to produce forces necessary to penetrate tissues that are at least an order of magnitude stiffer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.