In the Benguela upwelling system, the environmental conditions are determined to a large extent by central water masses advected from remote areas onto the shelf. The origin, spreading pathways and fate of those water masses are investigated with a regional ocean model that is analysed using Eulerian passive tracers and on the basis of Lagrangian trajectories. Two major water masses influencing the Benguela upwelling system are identified: tropical South Atlantic Central Water (SACW) and subtropical Eastern South Atlantic Central Water (ESACW). The spreading of tropical waters into the subtropical Benguela upwelling system is mediated by equatorial currents and their continuation in the Southeast Atlantic. This tropical-subtropical connection has been attributed to signal propagation in the equatorial and coastal waveguides. However, there exists an additional spreading path for tropical central water in the open ocean. This mass transport fluctuates on a seasonal scale around an averaged meridional transport in Sverdrup balance. The inter-annual variability of the advection of tropical waters is related to Benguela Niños, as evidenced by the 2010/2011 event. The northern Benguela upwelling system is a transition zone between SACW and ESACW since they encounter each other at about 20°S. Both water masses have seasonal variable shares in the upwelled water there. To summarise the main pathways of central water mass transport, an enhanced scheme for the subsurface circulation in the Southeast Atlantic is presented.
Coastal trapped waves (CTWs) that propagate poleward along the southwest African shelf potentially leak energy from lower latitudes into the Benguela Upwelling System (BUS). Thus, in addition to local winds, these waves provide an important remote forcing mechanism for the upwelling region. The present study aims at elucidating the nature of CTWs in the northern BUS. To this end, we make use of multisite velocity observations from the Namibian shelf (18°, 20°, 23°S) and examine the alongshore velocity signal for signatures of CTWs by means of wavelet methods. We found that a substantial amount of energy is concentrated within a submonthly to subseasonal frequency band (10–50 days). Based on the coherence and phase spectra of the alongshelf currents, we provide evidence for a predominantly southward phase propagation and establish typical time and length scales of CTWs in the region. It turns out that their properties differ significantly within a few hundred kilometers along the coast. A comparison of the results with theoretical dispersion curves shows that this difference may be explained by variations in the bottom topography. Finally, we investigate the coupling of the alongshore currents with the coastal and equatorial wind stress and highlight regions of potential wave generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.